• Title/Summary/Keyword: Random Tabu Search

Search Result 33, Processing Time 0.018 seconds

Development of the New Hybrid Evolutionary Algorithm for Low Vibration of Ship Structures (선박 구조물의 저진동 설계를 위한 새로운 조합 유전 알고리듬 개발)

  • Kong, Young-Mo;Choi, Su-Hyun;Song, Jin-Dae;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.665-673
    • /
    • 2006
  • This paper proposes a RSM-based hybrid evolutionary Algorithm (RHEA) which combines the merits of the popular programs such as genetic algorithm (GA), tabu search method and response surface methodology (RSM). This algorithm, for improving the convergent speed that is thought to be the demerit of genetic algorithm, uses response surface methodology and simplex method. The mutation of GA offers random variety to finding the optimum solution. In this study, however, systematic variety can be secured through the use of tabu list. Efficiency of this method has been proven by applying traditional left functions and comparing the results to GA. It was also proved that the newly suggested algorithm is very effective to find the global optimum solution to minimize the weight for avoiding the resonance of fresh water tank that is placed in the after body area of ship. According to the study, GA's convergent speed in initial stages is improved by using RSM method. An optimized solution is calculated without the evaluation of additional actual objective function. In a summary, it is concluded that RHEA is a very powerful global optimization algorithm from the view point of convergent speed and global search ability.

A Shaking Optimization Algorithm for Solving Job Shop Scheduling Problem

  • Abdelhafiez, Ehab A.;Alturki, Fahd A.
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • In solving the Job Shop Scheduling Problem, the best solution rarely is completely random; it follows one or more rules (heuristics). The Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing, and Tabu search, which belong to the Evolutionary Computations Algorithms (ECs), are not efficient enough in solving this problem as they neglect all conventional heuristics and hence they need to be hybridized with different heuristics. In this paper a new algorithm titled "Shaking Optimization Algorithm" is proposed that follows the common methodology of the Evolutionary Computations while utilizing different heuristics during the evolution process of the solution. The results show that the proposed algorithm outperforms the GA, PSO, SA, and TS algorithms, while being a good competitor to some other hybridized techniques in solving a selected number of benchmark Job Shop Scheduling problems.

A Neighbor Selection Technique for Improving Efficiency of Local Search in Load Balancing Problems (부하평준화 문제에서 국지적 탐색의 효율향상을 위한 이웃해 선정 기법)

  • 강병호;조민숙;류광렬
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.164-172
    • /
    • 2004
  • For a local search algorithm to find a bettor quality solution it is required to generate and evaluate a sufficiently large number of candidate solutions as neighbors at each iteration, demanding quite an amount of CPU time. This paper presents a method of selectively generating only good-looking candidate neighbors, so that the number of neighbors can be kept low to improve the efficiency of search. In our method, a newly generated candidate solution is probabilistically selected to become a neighbor based on the quality estimation determined heuristically by a very simple evaluation of the generated candidate. Experimental results on the problem of load balancing for production scheduling have shown that our candidate selection method outperforms other random or greedy selection methods in terms of solution quality given the same amount of CPU time.