• 제목/요약/키워드: Random Subspace Method

검색결과 24건 처리시간 0.021초

Multi-Label Classification Approach to Location Prediction

  • Lee, Min Sung
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권10호
    • /
    • pp.121-128
    • /
    • 2017
  • In this paper, we propose a multi-label classification method in which multi-label classification estimation techniques are applied to resolving location prediction problem. Most of previous studies related to location prediction have focused on the use of single-label classification by using contextual information such as user's movement paths, demographic information, etc. However, in this paper, we focused on the case where users are free to visit multiple locations, forcing decision-makers to use multi-labeled dataset. By using 2373 contextual dataset which was compiled from college students, we have obtained the best results with classifiers such as bagging, random subspace, and decision tree with the multi-label classification estimation methods like binary relevance(BR), binary pairwise classification (PW).

Experimental evaluation of crack effects on the dynamic characteristics of a prototype arch dam using ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • 제10권3호
    • /
    • pp.277-294
    • /
    • 2012
  • The aim of the study is to determine the modal parameters of a prototype damaged arch dam by operational modal analysis (OMA) method for some damage scenarios. For this purpose, a prototype arch dam-reservoir-foundation model is constructed under laboratory conditions. Ambient vibration tests on the arch dam model are performed to identify the modal parameters such as natural frequency, mode shape and damping ratio. The tests are conducted for four test-case scenarios: an undamaged dam with empty reservoir, two different damaged dams with empty reservoirs, and a damaged dam with full reservoir. Loading simulating random impact effects is applied on the dam to crack. Cracks and fractures occurred at the middle of the upper part of the dams and distributed through the abutments. Sensitivity accelerometers are placed on the dams' crests to collect signals for measurements. Operational modal analysis software processes the signals collected from the ambient vibration tests, and enhanced frequency domain decomposition and stochastic subspace identification techniques are used to estimate modal parameters of the dams. The modal parameters are obtained to establish a basis for comparison of the results of two techniques for each damage case. Results show that approximately 35-40% difference exists between the natural frequencies obtained from Case 1 and Case 4. The natural frequencies of the dam considerably decrease with increasing cracks. However, observation shows that the filled reservoir slightly affected modal parameters of the dam after severe cracking. The mode shapes obtained are symmetrical and anti-symmetrical. Apparently, mode shapes in Case 1 represent the probable responses of arch dams more accurately. Also, damping ratio show an increase when cracking increases.

Full-scale measurements of wind effects and modal parameter identification of Yingxian wooden tower

  • Chen, Bo;Yang, Qingshan;Wang, Ke;Wang, Linan
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.609-627
    • /
    • 2013
  • The Yingxian wooden tower in China is currently the tallest wooden tower in the world. It was built in 1056 AD and is 65.86 m high. Field measurements of wind speed and wind-induced response of this tower are conducted. The wind characteristics, including the average wind speed, wind direction, turbulence intensity, gust factor, turbulence integral length scale and velocity spectrum are investigated. The power spectral density and the root-mean-square wind-induced acceleration are analyzed. The structural modal parameters of this tower are identified with two different methods, including the Empirical Mode Decomposition (EMD) combined with the Random Decrement Technique (RDT) and Hilbert transform technique, and the stochastic subspace identification (SSI) method. Results show that strong wind is coming predominantly from the West-South of the tower which is in the same direction as the inclination of the structure. The Von Karman spectrum can describe the spectrum of wind speed well. Wind-induced torsional vibration obviously occurs in this tower. The natural frequencies identified by EMD, RDT and Hilbert Transform are close to those identified by SSI method, but there is obvious difference between the identified damping ratios for the first two modes.

구조 건전성 감시를 위한 스마트 가속도계의 성능 평가 (Performance Evaluation of Smart Accelerometers for Structural Health Monitoring)

  • 이진학;오혜선;윤정방
    • 대한토목학회논문집
    • /
    • 제26권4A호
    • /
    • pp.605-609
    • /
    • 2006
  • 이 연구에서는 최근 사회기반시설물의 스마트 모니터링을 위하여 많은 관심을 받고 있는 광섬유 FBG형 가속도계와 MEMS형 가속도계의 적용성을 평가하고자 하였다. 이들의 성능을 비교하기 위하여 저주파수 영역에서 높은 민감도와 신뢰성을 가지고 있는 ICP형 가속도계를 스마트 센서와 동시에 모형구조물에 부착하여 소규모 진동대 실험을 수행하였으며, 계측된 응답을 이용하여 모드해석을 수행함으로써 간접적으로 계측자료의 신뢰성을 비교하였다. 계측자료로부터 구한 모드자료를 이용하여 진단빌딩의 층간 강성을 추정하였다. 추정된 강성의 신뢰성을 검증하기 위하여 기지의 질량을 추가하여 구조물의 특성을 변경시킨 후, 다시 진동대 실험을 수행하여 구한 실험모드해석 결과를 수치해석결과와 비교하였다.