• Title/Summary/Keyword: Random Sample Consensus (RANSAC)

Search Result 61, Processing Time 0.023 seconds

AUTOMATIC PRECISION CORRECTION OF SATELLITE IMAGES

  • Im, Yong-Jo;Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.40-44
    • /
    • 2002
  • Precision correction is the process of geometrically aligning images to a reference coordinate system using GCPs(Ground Control Points). Many applications of remote sensing data, such as change detection, mapping and environmental monitoring, rely on the accuracy of precision correction. However it is a very time consuming and laborious process. It requires GCP collection, the identification of image points and their corresponding reference coordinates. At typical satellite ground stations, GCP collection requires most of man-powers in processing satellite images. A method of automatic registration of satellite images is demanding. In this paper, we propose a new algorithm for automatic precision correction by GCP chips and RANSAC(Random Sample Consensus). The algorithm is divided into two major steps. The first one is the automated generation of ground control points. An automated stereo matching based on normalized cross correlation will be used. We have improved the accuracy of stereo matching by determining the size and shape of match windows according to incidence angle and scene orientation from ancillary data. The second one is the robust estimation of mapping function from control points. We used the RANSAC algorithm for this step and effectively removed the outliers of matching results. We carried out experiments with SPOT images over three test sites which were taken at different time and look-angle with each other. Left image was used to select UP chipsets and right image to match against GCP chipsets and perform automatic registration. In result, we could show that our approach of automated matching and robust estimation worked well for automated registration.

  • PDF

Motion Field Estimation Using U-Disparity Map in Vehicle Environment

  • Seo, Seung-Woo;Lee, Gyu-Cheol;Yoo, Ji-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.428-435
    • /
    • 2017
  • In this paper, we propose a novel motion field estimation algorithm for which a U-disparity map and forward-and-backward error removal are applied in a vehicular environment. Generally, a motion exists in an image obtained by a camera attached to a vehicle by vehicle movement; however, the obtained motion vector is inaccurate because of the surrounding environmental factors such as the illumination changes and vehicles shaking. It is, therefore, difficult to extract an accurate motion vector, especially on the road surface, due to the similarity of the adjacent-pixel values; therefore, the proposed algorithm first removes the road surface region in the obtained image by using a U-disparity map, and uses then the optical flow that represents the motion vector of the object in the remaining part of the image. The algorithm also uses a forward-backward error-removal technique to improve the motion-vector accuracy and a vehicle's movement is predicted through the application of the RANSAC (RANdom SAmple Consensus) to the previously obtained motion vectors, resulting in the generation of a motion field. Through experiment results, we show that the performance of the proposed algorithm is superior to that of an existing algorithm.

System Architecture for Effective Point Cloud-based Reverse Engineering of Architectural MEP Pipe Object (효과적인 포인트 클라우드 기반 건축 MEP 파이프 객체 역설계 처리를 위한 시스템 아키텍처)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5870-5876
    • /
    • 2014
  • The aim of this study was to suggest the System Architecture for Effective Architectural MEP Pipe Reverse Design(PRD) based on the Point Cloud and derive the consideration. To do this, the requirement and use-cases related to the MEP pipe reverse design work were defined and the architecture for the reverse design automation was proposed. To identify a consideration for finding the architecture issues, a prototype was developed using the architecture and evaluated.

An Object Recognition Method Based on Depth Information for an Indoor Mobile Robot (실내 이동로봇을 위한 거리 정보 기반 물체 인식 방법)

  • Park, Jungkil;Park, Jaebyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.958-964
    • /
    • 2015
  • In this paper, an object recognition method based on the depth information from the RGB-D camera, Xtion, is proposed for an indoor mobile robot. First, the RANdom SAmple Consensus (RANSAC) algorithm is applied to the point cloud obtained from the RGB-D camera to detect and remove the floor points. Next, the removed point cloud is classified by the k-means clustering method as each object's point cloud, and the normal vector of each point is obtained by using the k-d tree search. The obtained normal vectors are classified by the trained multi-layer perceptron as 18 classes and used as features for object recognition. To distinguish an object from another object, the similarity between them is measured by using Levenshtein distance. To verify the effectiveness and feasibility of the proposed object recognition method, the experiments are carried out with several similar boxes.

Robust Features and Accurate Inliers Detection Framework: Application to Stereo Ego-motion Estimation

  • MIN, Haigen;ZHAO, Xiangmo;XU, Zhigang;ZHANG, Licheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.302-320
    • /
    • 2017
  • In this paper, an innovative robust feature detection and matching strategy for visual odometry based on stereo image sequence is proposed. First, a sparse multiscale 2D local invariant feature detection and description algorithm AKAZE is adopted to extract the interest points. A robust feature matching strategy is introduced to match AKAZE descriptors. In order to remove the outliers which are mismatched features or on dynamic objects, an improved random sample consensus outlier rejection scheme is presented. Thus the proposed method can be applied to dynamic environment. Then, geometric constraints are incorporated into the motion estimation without time-consuming 3-dimensional scene reconstruction. Last, an iterated sigma point Kalman Filter is adopted to refine the motion results. The presented ego-motion scheme is applied to benchmark datasets and compared with state-of-the-art approaches with data captured on campus in a considerably cluttered environment, where the superiorities are proved.

DB-based Feature Point Matching for Accurate and Efficient Obstacle Recognition in AR Environment (AR환경에서 정확하고 효율적인 장애물 인지를 위한 DB기반의 특징점 매칭)

  • Park, Jungwoo;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.377-380
    • /
    • 2022
  • 본 논문에서는 모바일 기반 AR 환경에서 RGB카메라로부터 얻은 영상 분석과 DB 기반의 특징점(Feature point) 매칭을 통하여 보다 정확하게 위험 상황을 알려줄 수 있는 프레임워크를 제안한다. 본 논문에서는 RANSAC(Random sample consensus)기반의 다중 평면 방식을 이용한 특징점을 추출하고 분석하여 영상에 존재하는 장애물을 감지한다. RGB카메라로 얻은 영상을 기반으로 장애물을 검출하는 접근법은 영상에 의존하기 때문에 조명에 따른 특징점 검출이 부정확하고, 조명이나 자연광 또는 날씨에 영향을 많이 받기 때문에 어둡거나 흐린 날씨에서는 장애물 검출이 어려워진다. 이 문제를 완화하기 위해 본 논문에서는 DB기반의 특징점 매칭을 통해 조명에 관계없이 장애물을 효율적이고 정확하게 감지한다. 특징점 매칭을 이용하려면 우선 영상에서 특징점이 안정적으로 추출될 수 있는 환경인, 조명이나 자연광이 충분한 환경에서 감지된 장애물 정보를 데이터베이스화 하여 저장한다. 조명이 충분하지 않은 환경에서 사용자가 사전에 저장된 지역에 근접할 경우 특징점 분석이 아닌 DB 기반 특징점 매칭을 통해 위험 요소를 감지한다. 우리의 방법은 조명의 여부의 관계없이 효과적으로 위험을 감지할 수 있기 때문에 다양한 분야에 활용될 수 있다.

  • PDF

Automated Derivation of Cross-sectional Numerical Information of Retaining Walls Using Point Cloud Data (점군 데이터를 활용한 옹벽의 단면 수치 정보 자동화 도출)

  • Han, Jehee;Jang, Minseo;Han, Hyungseo;Jo, Hyoungjun;Shin, Do Hyoung
    • Journal of KIBIM
    • /
    • v.14 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • The paper proposes a methodology that combines the Random Sample Consensus (RANSAC) algorithm and the Point Cloud Encoder-Decoder Network (PCEDNet) algorithm to automatically extract the length of infrastructure elements from point cloud data acquired through 3D LiDAR scans of retaining walls. This methodology is expected to significantly improve time and cost efficiency compared to traditional manual measurement techniques, which are crucial for the data-driven analysis required in the precision-demanding construction sector. Additionally, the extracted positional and dimensional data can contribute to enhanced accuracy and reliability in Scan-to-BIM processes. The results of this study are anticipated to provide important insights that could accelerate the digital transformation of the construction industry. This paper provides empirical data on how the integration of digital technologies can enhance efficiency and accuracy in the construction industry, and offers directions for future research and application.

Automatic Generation of GCP Chips from High Resolution Images using SUSAN Algorithms

  • Um Yong-Jo;Kim Moon-Gyu;Kim Taejung;Cho Seong-Ik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.220-223
    • /
    • 2004
  • Automatic image registration is an essential element of remote sensing because remote sensing system generates enormous amount of data, which are multiple observations of the same features at different times and by different sensor. The general process of automatic image registration includes three steps: 1) The extraction of features to be used in the matching process, 2) the feature matching strategy and accurate matching process, 3) the resampling of the data based on the correspondence computed from matched feature. For step 2) and 3), we have developed an algorithms for automated registration of satellite images with RANSAC(Random Sample Consensus) in success. However, for step 1), There still remains human operation to generate GCP Chips, which is time consuming, laborious and expensive process. The main idea of this research is that we are able to automatically generate GCP chips with comer detection algorithms without GPS survey and human interventions if we have systematic corrected satellite image within adaptable positional accuracy. In this research, we use SUSAN(Smallest Univalue Segment Assimilating Nucleus) algorithm in order to detect the comer. SUSAN algorithm is known as the best robust algorithms for comer detection in the field of compute vision. However, there are so many comers in high-resolution images so that we need to reduce the comer points from SUSAN algorithms to overcome redundancy. In experiment, we automatically generate GCP chips from IKONOS images with geo level using SUSAN algorithms. Then we extract reference coordinate from IKONOS images and DEM data and filter the comer points using texture analysis. At last, we apply automatically collected GCP chips by proposed method and the GCP by operator to in-house automatic precision correction algorithms. The compared result will be presented to show the GCP quality.

  • PDF

Development of Cell Guide Quality Management System for Container Ships (컨테이너 선박의 셀 가이드 정도 관리 시스템 개발)

  • Park, Bong-Rae;Kim, Hyun-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.158-165
    • /
    • 2018
  • Generally, container ships contain cargo holds with cell guides that serve to increase the container loading and unloading efficiency, minimize the space loss, and fix containers during the voyage. This paper describes a new quality management system for the cell guides of container ships (the so-called Trim Cell Guide system). The main functions of this system are the trimming of the point cloud obtained using a 3D scanner and an inspection simulation for cell guide quality. In other words, the raw point cloud of cell guides after construction is measured using a 3D scanner. Here, the raw point cloud contains a lot of noise and unnecessary information. Using the GUI interface supported by the system, the raw point cloud can be trimmed. The trimmed point cloud is used in a simulation for cell guide quality inspection. The RANSAC (Random Sample Consensus) algorithm is used for the transverse section representation of a cell guide at a certain height and applied for the calculation of the intervals between the cell guides and container. When the container hits the cell guides during the inspection simulation, the container is rotated horizontally and checked again for a possible collision. It focuses on a system that can be simulated with the same inspection process as in a shipyard. For a practicality review, we compared the precision data gained from an inspection simulation with the measured data. As a result, it was confirmed that these values were within approximately ${\pm}2mm$.

A Hybrid Semantic-Geometric Approach for Clutter-Resistant Floorplan Generation from Building Point Clouds

  • Kim, Seongyong;Yajima, Yosuke;Park, Jisoo;Chen, Jingdao;Cho, Yong K.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.792-799
    • /
    • 2022
  • Building Information Modeling (BIM) technology is a key component of modern construction engineering and project management workflows. As-is BIM models that represent the spatial reality of a project site can offer crucial information to stakeholders for construction progress monitoring, error checking, and building maintenance purposes. Geometric methods for automatically converting raw scan data into BIM models (Scan-to-BIM) often fail to make use of higher-level semantic information in the data. Whereas, semantic segmentation methods only output labels at the point level without creating object level models that is necessary for BIM. To address these issues, this research proposes a hybrid semantic-geometric approach for clutter-resistant floorplan generation from laser-scanned building point clouds. The input point clouds are first pre-processed by normalizing the coordinate system and removing outliers. Then, a semantic segmentation network based on PointNet++ is used to label each point as ceiling, floor, wall, door, stair, and clutter. The clutter points are removed whereas the wall, door, and stair points are used for 2D floorplan generation. A region-growing segmentation algorithm paired with geometric reasoning rules is applied to group the points together into individual building elements. Finally, a 2-fold Random Sample Consensus (RANSAC) algorithm is applied to parameterize the building elements into 2D lines which are used to create the output floorplan. The proposed method is evaluated using the metrics of precision, recall, Intersection-over-Union (IOU), Betti error, and warping error.

  • PDF