• Title/Summary/Keyword: Random Heterogeneous Media

Search Result 5, Processing Time 0.03 seconds

Fluctuation of Transport Properties of Random Heterogeneous Media (비정형 혼합재 이동성질의 변동)

  • Kim, In-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.3015-3029
    • /
    • 1996
  • The notion of effective transport property of a heterogeneous medium implies that the medium is large enough that the ergodic theorem holds and local fluctuation of the property can be neglected. In case that the medium is not large enough compared to its characteristic microstructure length scale, the effective property fluctuates and differs from the value of the medium being large enough. As a representative transport phenomenon, diffusion was considered and the fluctuation of varying effective diffusion property, diffusion coarseness $C_k$, was defined as a quantifying parameter. Scaled effective diffusion property, $^*$>/k$_1$ and $C_k$ were computed for the two phase random media consisting of matrix of diffusion coefficient k$_1$ and spheres of diffusion coefficient k$_2$. Numerical simulations were performed by use of the so-called first passage time technique and data were collected for existing microstructure models of hard spheres(HS), overlapping spheres(OS) and penetrable concentric shells(PCS).

Effective Method for Analysis of Heterogeneous Porous Media (비균질 다공성 매질의 효율적 해석 방법)

  • Park, Chang-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.459-467
    • /
    • 1998
  • The existing methods to analyze the heterogeneous porous media based on the similar media concept are the microscopic Miller similitude(MiS), the macroscopic Miller similitude(MaS) and the Warrick similitude(WS). The inter-relationship is found such that MiS ⊂ MaS ⊂ (⊂:subset). The proposed method is based ont eh assumption that the scale variables $\alpha$=w and the moisture content is dimensionless by introducing the effective degree of saturation instead of the degree of saturation into WS. The method, without the loss of generality in view of the inspectional analysis, can explain the heterogeneity of the media by using the scale variable $\alpha$ only. The media of $\alpha$=1 (average of $\alpha$) means the equivalent media corresponding to the heterogeneous media, while the standard deviation of $\alpha$ may explain the degree of the heterogeneity of the media under consideration. The hydraulic conductivity of the media with $\alpha$>1 is greater than that of the equivalent media, and the effective moisture content of the media with $\alpha$>1 is also greater. Based on these properties of the scale variable $\alpha$, the ideal vertical one-dimensional heterogeneous porous media is generated by using the technique of random number generation.

  • PDF

A Semi-Markov Decision Process (SMDP) for Active State Control of A Heterogeneous Network

  • Yang, Janghoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3171-3191
    • /
    • 2016
  • Due to growing demand on wireless data traffic, a large number of different types of base stations (BSs) have been installed. However, space-time dependent wireless data traffic densities can result in a significant number of idle BSs, which implies the waste of power resources. To deal with this problem, we propose an active state control algorithm based on semi-Markov decision process (SMDP) for a heterogeneous network. A MDP in discrete time domain is formulated from continuous domain with some approximation. Suboptimal on-line learning algorithm with a random policy is proposed to solve the problem. We explicitly include coverage constraint so that active cells can provide the same signal to noise ratio (SNR) coverage with a targeted outage rate. Simulation results verify that the proposed algorithm properly controls the active state depending on traffic densities without increasing the number of handovers excessively while providing average user perceived rate (UPR) in a more power efficient way than a conventional algorithm.

A Numerical Study on Spatial Behavior of Linear Absorbing Solute in Heterogeneous Porous Media (비균질 다공성 매질에서 선형 흡착 용질의 공간적 거동에 대한 수치적 연구)

  • Jeong, Woo Chang;Lee, Chi Hun;Song, Jai Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.79-88
    • /
    • 2003
  • This paper presents a numerical study of the spatial behavior of a linear absorbing solute in a heterogeneous porous medium. The spatially correlated log-normal hydraulic conductivity field is generated in a given two-dimensional domain by using the geostatistical method (Turning Bands algorithm). The velocity vector field is calculated by applying the two-dimensional saturated groundwater flow equation to the Galerkin finite element method. The simulation of solute transport is carried out by using the random walk particle tracking model with CD(constant displacement) scheme in which the time interval is automatically adjusted. In this study, the spatial behavior of a solute is analyzed by the longitudinal center-of-mass displacement, longitudinal spatial spread moment and longitudinal plume skewness.

  • PDF

A Numerical Study on Solute Transport in Heterogeneous Porous Media

  • Jeong, Woo-Chang;Song, Jai-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05b
    • /
    • pp.1027-1033
    • /
    • 2002
  • The solute transport in a two-dimensional heterogeneous porous medium is numerically studied by using a random walk particle tracking (RWPT) method. Lognormally isotropic hydraulic conductivity fields are generated by using the turning band methods with mean zero and four different values of standard deviation. The numerical transport experiments are carried out to investigate the large time and spatial effects of the variable pore velocity field on solute plumes. The behavior of the solute plume through numerical simulations is presented in terms of longitudinal and transverse spatial moments: displacement of center-of-mass, plume spread variance and skewness coefficient. It was observed that the dispersive behavior of the solute plume is strongly affected by the degree of heterogeneity in the flow domain.

  • PDF