• Title/Summary/Keyword: Random Effects Model

Search Result 734, Processing Time 0.022 seconds

Analyses of the Efficiency in Hospital Management (병원 단위비용 결정요인에 관한 연구)

  • Ro, Kong-Kyun;Lee, Seon
    • Korea Journal of Hospital Management
    • /
    • v.9 no.1
    • /
    • pp.66-94
    • /
    • 2004
  • The objective of this study is to examine how to maximize the efficiency of hospital management by minimizing the unit cost of hospital operation. For this purpose, this paper proposes to develop a model of the profit maximization based on the cost minimization dictum using the statistical tools of arriving at the maximum likelihood values. The preliminary survey data are collected from the annual statistics and their analyses published by Korea Health Industry Development Institute and Korean Hospital Association. The maximum likelihood value statistical analyses are conducted from the information on the cost (function) of each of 36 hospitals selected by the random stratified sampling method according to the size and location (urban or rural) of hospitals. We believe that, although the size of sample is relatively small, because of the sampling method used and the high response rate, the power of estimation of the results of the statistical analyses of the sample hospitals is acceptable. The conceptual framework of analyses is adopted from the various models of the determinants of hospital costs used by the previous studies. According to this framework, the study postulates that the unit cost of hospital operation is determined by the size, scope of service, technology (production function) as measured by capacity utilization, labor capital ratio and labor input-mix variables, and by exogeneous variables. The variables to represent the above cost determinants are selected by using the step-wise regression so that only the statistically significant variables may be utilized in analyzing how these variables impact on the hospital unit cost. The results of the analyses show that the models of hospital cost determinants adopted are well chosen. The various models analyzed have the (goodness of fit) overall determination (R2) which all turned out to be significant, regardless of the variables put in to represent the cost determinants. Specifically, the size and scope of service, no matter how it is measured, i. e., number of admissions per bed, number of ambulatory visits per bed, adjusted inpatient days and adjusted outpatients, have overall effects of reducing the hospital unit costs as measured by the cost per admission, per inpatient day, or office visit implying the existence of the economy of scale in the hospital operation. Thirdly, the technology used in operating a hospital has turned out to have its ramifications on the hospital unit cost similar to those postulated in the static theory of the firm. For example, the capacity utilization as represented by the inpatient days per employee tuned out to have statistically significant negative impacts on the unit cost of hospital operation, while payroll expenses per inpatient cost has a positive effect. The input-mix of hospital operation, as represented by the ratio of the number of doctor, nurse or medical staff per general employee, supports the known thesis that the specialized manpower costs more than the general employees. The labor/capital ratio as represented by the employees per 100 beds is shown to have a positive effect on the cost as expected. As for the exogeneous variable's impacts on the cost, when this variable is represented by the percent of urban 100 population at the location where the hospital is located, the regression analysis shows that the hospitals located in the urban area have a higher cost than those in the rural area. Finally, the case study of the sample hospitals offers a specific information to hospital administrators about how they share in terms of the cost they are incurring in comparison to other hospitals. For example, if his/her hospital is of small size and located in a city, he/she can compare the various costs of his/her hospital operation with those of other similar hospitals. Therefore, he/she may be able to find the reasons why the cost of his/her hospital operation has a higher or lower cost than other similar hospitals in what factors of the hospital cost determinants.

  • PDF

Vitamin D and Risk of Respiratory Tract Infections in Children: A Systematic Review and Meta-analysis of Randomized Controlled Trials (비타민 D와 소아 호흡기 감염의 위험성: 무작위 대조 연구에 대한 체계적 문헌고찰 및 메타분석)

  • Ahn, Jong Gyun;Lee, Dokyung;Kim, Kyung-Hyo
    • Pediatric Infection and Vaccine
    • /
    • v.23 no.2
    • /
    • pp.109-116
    • /
    • 2016
  • Purpose: Recent observational studies have found that vitamin D deficiency is associated with respiratory tract infections. However, randomized controlled trials (RCTs) regarding the efficacy of vitamin D in childhood respiratory tract infection (RTI) have yield inconsistent results. We performed a systematic review and meta-analysis to evaluate the association between vitamin D supplementation and the risk of RTI. Methods: A comprehensive search was conducted using MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trial. Randomized controlled trials of vitamin D supplementation for prevention of RTI in children were included for the analysis. Cochrane Collaboration's tool for assessing the risk of bias was used to assess the quality of the studies. Pooled risk ratios with 95% confidence intervals (CIs) were meta-analyzed using Review Manager 5.3. Results: A total of seven RCTs were included in the meta-analysis. According to a random-effects model, the risk ratio for vitamin D supplementation was 0.82 (95% CI: 0.69-0.98) and $I^2=62%$ for heterogeneity. On subgroup analysis, heterogeneity decreased in the subgroup with follow-up less than 1 year, participants ${\geq}5years$ of age, patients subgroup, and subgroup with dosing daily. Funnel plot showed that there might be publication bias in the field. Conclusions: The present meta-analysis supports a beneficial effect of vitamin D supplementation for the prevention of RTI in children. However, the result should be interpreted with caution due to limitations including a small number of available RCTs, heterogeneity among the studies, and potential publication bias.

The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms (다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구)

  • Kim, Jeonghun;Kim, Min Yong;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.23-45
    • /
    • 2020
  • Big data is creating in a wide variety of fields such as medical care, manufacturing, logistics, sales site, SNS, and the dataset characteristics are also diverse. In order to secure the competitiveness of companies, it is necessary to improve decision-making capacity using a classification algorithm. However, most of them do not have sufficient knowledge on what kind of classification algorithm is appropriate for a specific problem area. In other words, determining which classification algorithm is appropriate depending on the characteristics of the dataset was has been a task that required expertise and effort. This is because the relationship between the characteristics of datasets (called meta-features) and the performance of classification algorithms has not been fully understood. Moreover, there has been little research on meta-features reflecting the characteristics of multi-class. Therefore, the purpose of this study is to empirically analyze whether meta-features of multi-class datasets have a significant effect on the performance of classification algorithms. In this study, meta-features of multi-class datasets were identified into two factors, (the data structure and the data complexity,) and seven representative meta-features were selected. Among those, we included the Herfindahl-Hirschman Index (HHI), originally a market concentration measurement index, in the meta-features to replace IR(Imbalanced Ratio). Also, we developed a new index called Reverse ReLU Silhouette Score into the meta-feature set. Among the UCI Machine Learning Repository data, six representative datasets (Balance Scale, PageBlocks, Car Evaluation, User Knowledge-Modeling, Wine Quality(red), Contraceptive Method Choice) were selected. The class of each dataset was classified by using the classification algorithms (KNN, Logistic Regression, Nave Bayes, Random Forest, and SVM) selected in the study. For each dataset, we applied 10-fold cross validation method. 10% to 100% oversampling method is applied for each fold and meta-features of the dataset is measured. The meta-features selected are HHI, Number of Classes, Number of Features, Entropy, Reverse ReLU Silhouette Score, Nonlinearity of Linear Classifier, Hub Score. F1-score was selected as the dependent variable. As a result, the results of this study showed that the six meta-features including Reverse ReLU Silhouette Score and HHI proposed in this study have a significant effect on the classification performance. (1) The meta-features HHI proposed in this study was significant in the classification performance. (2) The number of variables has a significant effect on the classification performance, unlike the number of classes, but it has a positive effect. (3) The number of classes has a negative effect on the performance of classification. (4) Entropy has a significant effect on the performance of classification. (5) The Reverse ReLU Silhouette Score also significantly affects the classification performance at a significant level of 0.01. (6) The nonlinearity of linear classifiers has a significant negative effect on classification performance. In addition, the results of the analysis by the classification algorithms were also consistent. In the regression analysis by classification algorithm, Naïve Bayes algorithm does not have a significant effect on the number of variables unlike other classification algorithms. This study has two theoretical contributions: (1) two new meta-features (HHI, Reverse ReLU Silhouette score) was proved to be significant. (2) The effects of data characteristics on the performance of classification were investigated using meta-features. The practical contribution points (1) can be utilized in the development of classification algorithm recommendation system according to the characteristics of datasets. (2) Many data scientists are often testing by adjusting the parameters of the algorithm to find the optimal algorithm for the situation because the characteristics of the data are different. In this process, excessive waste of resources occurs due to hardware, cost, time, and manpower. This study is expected to be useful for machine learning, data mining researchers, practitioners, and machine learning-based system developers. The composition of this study consists of introduction, related research, research model, experiment, conclusion and discussion.

The Effect of Structured Information on the Sleep Amount of Patients Undergoing Open Heart Surgery (계획된 간호 정보가 수면량에 미치는 영향에 관한 연구 -개심술 환자를 중심으로-)

  • 이소우
    • Journal of Korean Academy of Nursing
    • /
    • v.12 no.2
    • /
    • pp.1-26
    • /
    • 1982
  • The main purpose of this study was to test the effect of the structured information on the sleep amount of the patients undergoing open heart surgery. This study has specifically addressed to the Following two basic research questions: (1) Would the structed in formation influence in the reduction of sleep disturbance related to anxiety and Physical stress before and after the operation? and (2) that would be the effects of the structured information on the level of preoperative state anxiety, the hormonal change, and the degree of behavioral change in the patients undergoing an open heart surgery? A Quasi-experimental research was designed to answer these questions with one experimental group and one control group. Subjects in both groups were matched as closely as possible to avoid the effect of the differences inherent to the group characteristics, Baseline data were also. collected on both groups for 7 days prior to the experiment and found that subjects in both groups had comparable sleep patterns, trait anxiety, hormonal levels and behavioral level. A structured information as an experimental input was given to the subjects in the experimental group only. Data were collected and compared between the experimental group and the control group on the sleep amount of the consecutive pre and post operative days, on preoperative state anxiety level, and on hormonal and behavioral changes. To test the effectiveness of the structured information, two main hypotheses and three sub-hypotheses were formulated as follows; Main hypothesis 1: Experimental group which received structured information will have more sleep amount than control group without structured information in the night before the open heart surgery. Main hypothesis 2: Experimental group with structured information will have more sleep, amount than control group without structured information during the week following the open heart surgery Sub-hypothesis 1: Experimental group with structured information will be lower in the level of State anxiety than control group without structured information in the night before the open heart surgery. Sub-hypothesis 2 : Experimental group with structured information will have lower hormonal level than control group without stuctured information on the 5th day after the open heart surgery Sub-hypothesis 3: Experimental group with structured information will be lower in the behavioral change level than control group without structured information during the week after the open heart surgery. The research was conducted in a national university hospital in Seoul, Korea. The 53 Subjects who participated in the study were systematically divided into experimental group and control group which was decided by random sampling method. Among 53 subjects, 26 were placed in the experimental group and 27 in the control group. Instruments; (1) Structed information: Structured information as an independent variable was constructed by the researcher on the basis of Roy's adaptation model consisting of physiologic needs, self-concept, role function and interdependence needs as related to the sleep and of operational procedures. (2) Sleep amount measure: Sleep amount as main dependent variable was measured by trained nurses through observation on the basis of the established criteria, such as closed or open eyes, regular or irregular respiration, body movement, posture, responses to the light and question, facial expressions and self report after sleep. (3) State anxiety measure: State Anxiety as a sub-dependent variable was measured by Spi-elberger's STAI Anxiety scale, (4) Hormornal change measure: Hormone as a sub-dependent variable was measured by the cortisol level in plasma. (5) Behavior change measure: Behavior as a sub-dependent variable was measured by the Behavior and Mood Rating Scale by Wyatt. The data were collected over a period of four months, from June to October 1981, after the pretest period of two months. For the analysis of the data and test for the hypotheses, the t-test with mean differences and analysis of covariance was used. The result of the test for instruments show as follows: (1) STAI measurement for trait and state anxiety as analyzed by Cronbachs alpha coefficient analysis for item analysis and reliability showed the reliability level at r= .90 r= .91 respectively. (2) Behavior and Mood Rating Scale measurement was analyzed by means of Principal Component Analysis technique. Seven factors retained were anger, anxiety, hyperactivity, depression, bizarre behavior, suspicious behavior and emotional withdrawal. Cumulative percentage of each factor was 71.3%. The result of the test for hypotheses show as follows; (1) Main hypothesis, was not supported. The experimental group has 282 minutes of sleep as compared to the 255 minutes of sleep by the control group. Thus the sleep amount was higher in experimental group than in control group, however, the difference was not statistically significant at .05 level. (2) Main hypothesis 2 was not supported. The mean sleep amount of the experimental group and control group were 297 minutes and 278 minutes respectively Therefore, the experimental group had more sleep amount as compared to the control group, however, the difference was not statistically significant at .05 level. Thus, the main hypothesis 2 was not supported. (3) Sub-hypothesis 1 was not supported. The mean state anxiety of the experimental group and control group were 42.3, 43.9 in scores. Thus, the experimental group had slightly lower state anxiety level than control group, howe-ver, the difference was not statistically significant at .05 level. (4) Sub-hypothesis 2 was not supported. . The mean hormonal level of the experimental group and control group were 338 ㎍ and 440 ㎍ respectively. Thus, the experimental group showed decreased hormonal level than the control group, however, the difference was not statistically significant at .05 level. (5) Sub-hypothesis 3 was supported. The mean behavioral level of the experimental group and control group were 29.60 and 32.00 respectively in score. Thus, the experimental group showed lower behavioral change level than the control group. The difference was statistically significant at .05 level. In summary, the structured information did not influence the sleep amount, state anxiety or hormonal level of the subjects undergoing an open heart surgery at a statistically significant level, however, it showed a definite trends in their relationships, not least to mention its significant effect shown on behavioral change level. It can further be speculated that a great degree of individual differences in the variables such as sleep amount, state anxiety and fluctuation in hormonal level may partly be responsible for the statistical insensitivity to the experimentation.

  • PDF