• 제목/요약/키워드: Rand index (Hubert-Arabie corrected)

검색결과 1건 처리시간 0.013초

K-평균 군집화의 재현성 평가 및 응용 (Reproducibility Assessment of K-Means Clustering and Applications)

  • 허명회;이용구
    • 응용통계연구
    • /
    • 제17권1호
    • /
    • pp.135-144
    • /
    • 2004
  • K-평균 군집화(K-means clustering)는 고객 세분화(customer segmentation) 등 데이터 마이닝에서 중요한 한 몫을 하는 비지도 학습방법 (unsupervised learning method)이다. K-평균 군집화가 재현성(reproducibility)이 있는가를 보기 위하여, 다수의 기존 연구에서는 관측 자료를 2개 셋으로 나눈 자료 분할(data partitioning) 방법이 활용되고 있다. 본 교신에서 우리는 이보다 개념적으로 명확한 새로운 자료 분할 방법을 제안한다. 이 방법은 관측 자료를 3개 셋으로 나누어 그 중 2개 자료 셋을 독립적인 군집화 규칙을 생성하는 데 사용하고 나머지 1개의 자료 셋을 규칙간 일치성을 테스트하는데 사용한다. 또한 2개의 군집화 규칙간 일치성 평가를 위한 지표로서 엔트로피 기준의 환용 방법을 제시한다.