• Title/Summary/Keyword: Ramp rate

Search Result 129, Processing Time 0.021 seconds

Design and Implementation of FMCW Radar Signal Processor for Drone Altitude Measurement (드론 고도 측정용 FMCW 레이다 신호처리 프로세서 설계 및 구현)

  • Lim, Euibeen;Jin, Sora;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.554-560
    • /
    • 2017
  • Accurate altimetry is required for the reliable flight control of drones or unmanned air vehicles (UAVs), and the radar altimeter is commonly used owing to its accuracy for the ground level. Due to the limitation for size, weight and power consumption, the frequency modulated continuous wave (FMCW) radar is appropriate for drone because it has lower complexity than that of pulse Doppler (PD) radar. Especially, fast-ramp FMCW radar, which transmits linear FM signal during very short period, is generally utilized, because it is robust for the ego-motion of drone. Therefore, we present the design and implementation results of the radar signal processor (RSP) for fast-ramp FMCW radar system. The proposed RSP was designed with Verilog-HDL and implemented with Altera Cyclone-IV FPGA device. Implementation results show that the proposed RSP includes 27,523 logic elements, 15,798 registers and memory of 138Kbits and can measure the altimeter at the rate of 100Hz with the operating frequency of 50MHz.

The Effect of Hydraulic Efficiency on the Design Variables of an Overtopping Wave Energy Converter (월파수류형 파력발전구조물의 상부 사면 설계변수에 따른 수력학적 효율 영향 연구)

  • An, Sung-Hwan;Kim, Geun-Gon;Lee, Jong-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.168-174
    • /
    • 2022
  • In a wave power generation system, the overtopping system is known as an overtopping wave energy converter (OWEC). The performance of an OWEC is affected by wave characteristics such as height and period because its power generation system is sensitive to those characteristics; these, as well as wave direction, depend on the sea. As these characteristics vary, it is hard for the OWEC to produce power in a stable manner. Therefore, it is necessary to find an appropriate shape for an OWEC, according to the characteristics of the sea it is in. This research verified the effect of the design of the OWEC ramp on the hydraulic efficiency using the smoothed particle hydrodynamics (SPH) particle method. A total of 10 models were designed and used in simulations performed by selecting the design parameters of the ramp and changing the attack angle based on those parameters. The hydraulic efficiency was calculated based on the rate of discharged water obtained from the analysis result. The effect of each variable on the overtopping performance according to the shape of the ramp was then confirmed. In this study, we present suggestions for determining the direction for an appropriately shaped OWEC ramp, based on a specific sea area.

Study on Entering Improvement of Acceleration Lane onto an Expressway Using a Traffic Simulation (교통시뮬레이션을 활용한 고속도로 유입연결로 가속차로 진입 개선방안에 관한 연구)

  • Roh, Hee-Chan;Kim, Nak-seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.409-415
    • /
    • 2022
  • The length of the acceleration lane in the area of entrance terminals is calculated based on 13 PS/ton horsepower of a cargo truck in Korea, so it is generally overestimated compared with the capacity of most vehicles traveling on an entrance ramp. Most drivers have, therefore, an indiscreet tendency to enter the main lane in all sections of an acceleration lane, which affects the traffic flow of the main lane. Because of this tendency, measures are required to minimize the impact on traffic flow of the main lane. The operating speed, rate of entrance, and traffic volume for each vehicle were investigated at the entrance terminals of the interchanges (ICs) of Yangji IC, Suseok IC, Yongin IC, and Osan IC, and the level of improvement in traffic flow was analyzed via VISSIM simulation. From the VISSIM simulation analysis, 74.0 % of the total vehicles traveled over the specified speed from the nose point where drivers would be able to recognize the traffic condition of the main carriageway, or the point at which there is a simplification of the curve section. In addition, 88.6 % of the vehicles entered the main carriageway up to 0.8 points compared with the entire length of the acceleration lane. It was subsequently found that an improvement of average speed in the main carriageway and at the entrance ramp can be achieved from 60.1 km/h to 68.5 km/h by intentionally limiting the entrance point onto the main carriageway up to 0.265 points of the entrance ramp.

Influence of Injection Rate Shaping on Combustion and Emissions for a Medium Duty Diesel Engine

  • Benajes, J.;Molina, S.;Rudder, K. De;Rente, T.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1436-1448
    • /
    • 2006
  • This paper describes the effects of injection rate shaping on the combustion, fuel consumption and emission of $NO_x$ and soot of a medium duty diesel engine. The focus is on the influence of four different injection rate shapes, square type 1, square type 2, boot and ramp, with a variation of maximum injection pressure and start of injection (SOI). The experiments were carried out on a 1 liter single cylinder research diesel engine equipped with an amplifier-piston common rail injection system, allowing the adjustment of the injection pressure during the injection event and thus injection rate as desired. Two strategies to maintain the injected fuel mass constant were followed. One where rate shaping is applied at constant injection duration with different peak injection pressure and one strategy where rate shaping is applied at a constant peak injection pressure, but with variable injection duration. Injection rate shaping was found to have a large effect on the premixed and diffusion combustion, a significant influence on $NO_x$ emissions and depending on the followed strategy, moderate or no influence on soot emission. Only small effects on indicated fuel consumption were found.

A Study on the Operating Characteristics of Molded Case Circuit Breakers according to Temperature Rise (온도상승에 따른 배선용 차단기의 동작특성에 관한 연구)

  • Jung, Da-Woon;Kim, Jae-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.8-13
    • /
    • 2015
  • Molded Case Circuit Breakers (MCCBs) are typically used to provide over current protection for electrical safety caused by short circuit faults and overloads in indoor low voltage power systems. The MCCB automatically connects and disconnects loads from the electrical source when the current reaches a value and duration that will cause an excessive. However, the MCCB sometimes is not interrupted due to a malfunction, nuisance tripping, or in a fire. Ensuring electrical safety is very important in a indoor low voltage power system. This paper presents the operating characteristics of MCCBs according to a temperature rise from room temperature to 160 degrees Celsius delivered by a radiant panel heater. The ABS 54c(rated current: 30A) of the hydraulic magnetic trip type was used in the experiments. The signals of temperature, voltage, and current were measured using the high accuracy Signal Conditioning Extensions for Instrumentation (SCXI) measurement system with the LabVIEW program manufactured by National Instruments. The operating characteristics were measured as functions of current amplitude and ramp-up rate. The MCCB tripping time decreased as a result of increasing current amplitude and ramp-up rate under a temperature rise condition, because the temperature and level of the current are directly proportional to the tripping time. Additionally, an instantaneous operation was observed after 8 times of the rated current, and the MCCB began to melt a surface temperature of around 300 degrees Celsius of. The experimental results coincided well with the operating curve.

A Study on Steady-state and Transient Performance Simulation of Turboprop Engine(PT6A-62) (터보프롭엔진(PT6A-62)의 정.동적 성능모사에 관한 연구)

  • 공창덕;기자영;신현기
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • The performance simulation program on the turboprop engine(PT6A-62), which is a main engine of the first trainer KT-1 in republic of Korea, was developed. Characteristics of engine components were required for the steady-state performance analysis including on and off design point analysis. In most cases, these were substituted for what scaled from well known engine components characteristics with the scaling law. The developed program was compared with CASTURB program which is well known for the simulation performance analysis, such as analysis results of mass flow rate, compressor pressure ratio, fuel flow rate, power, specific fuel consumption ratio and turbine inlet temperature in the following four cases, to evaluate whether the developed program is acceptable or not. The first case was the sea level static standard condition and other cases were considered with various flight Mach numbers, altitudes. After verifying the developed program, the partload performance analysis was carried out. Transient performance analysis for various fuel schedules were performed. When the fuel step increase of 0.1sec was performed, the overshoot of the compressor turbine inlet temperature occurred. However, the fuel ramp increase for longer than 0.1sec time was performed, the overshoot could be eliminated.

  • PDF

Physicochemical and Adsorptive Properties of Black Carbon for Radioactive Cesium under Various Combustion Conditions and Tree Species (연소 조건과 수종을 달리한 블랙카본의 물리화학적 성질 및 세슘의 흡착 특성)

  • Jeon, Sodam;Choung, Sungwook;Han, Weon Shik;Jang, Kyoung-Soon;Shin, Woosik;Hwang, Jeonghwan
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.689-695
    • /
    • 2017
  • This study was carried out to investigate the physicochemical and adsorptive characteristics of black carbon (BC) materials for cesium in case of severe nuclear accidents. The BC was prepared with a xylem of oak and pine trees incompletely combusted with different ramp rate and final temperature. Carbon (C), hydrogen (H) and oxygen (O) atomic ratios, BET, pore structure, and zeta potential were characterized for the produced BC. A low cesium concentration ($C_w{\approx}10^{-7}M$) was used for sorption batch experiments. The H/C and O/C ratios of BC decreased with the increase of final temperature, which indicates a carbonization of the wood materials regardless of ramp rate and tree species. However, SEM images showed different pore structures depending on tree species such as steric and plate-like for oak-BC and pine-BC, respectively. The greatest sorption distribution coefficients of $K_{d,Cs}{\approx}1,200{\sim}1,800L\;kg^{-1}$ were observed for the oak-BC produced at $400^{\circ}C$, while comparatively low $K_{d,Cs}$ < $100L\;kg^{-1}$ for pine-BC. In addition, the sorption capabilities of BC declined with the increase of combustion temperature up to $600^{\circ}C$, because high temperature destroyed surface functionalities with the rise of ash components in the BC. Therefore, the sorption processes of BC for radioactive cesium are predominantly controlled by final production temperature of BC as well as raw materials (e.g., tree species).

High Frame Rate VGA CMOS Image Sensor using Three Step Single Slope Column-Parallel ADCs

  • Lee, Junan;Huang, Qiwei;Kim, Kiwoon;Kim, Kyunghoon;Burm, Jinwook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • This paper proposes column-parallel three step Single Slope Analog-to-Digital Converter (SS-ADC) for high frame rate VGA CMOS Image Sensors (CISs). The proposed three step SS-ADC improves the sampling rate while maintaining the architecture of the conventional SS-ADC for high frame rate CIS. The sampling rate of the three-step ADC is increased by a factor of 39 compared with the conventional SS-ADC. The proposed three-step SS-ADC has a 12-bit resolution and 200 kS/s at 25 MHz clock frequency. The VGA CIS using three step SS-ADC has the maximum frame rate of 200 frames/s. The total power consumption is 76 mW with 3.3 V supply voltage without ramp generator buffer. A prototype chip was fabricated in a $0.13{\mu}m$ CMOS process.

State Transition Model of Demand Response Considering Behavior Patterns of Customer (소비자의 행동 패턴을 고려한 수요반응의 상태 천이 모델)

  • Kwag, Hyung-Geun;Lee, Na-Eun;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1074-1079
    • /
    • 2013
  • Demand response(DR) is potential generation alternative to improve the reliability indices of system and load points. However, when demand resources scheduled in DR market fail to reduce demand, it can create new problems associated with maintaining a reliable supply. In this paper, a reliability model of demand resource is constructed considering customers' behaviors in the same form as conventional generation units, where availability and unavailability are associated with the simple two-state model. As a result, the generalized reliability model of demand resources is represented by multi-state model.

지진하중에 의한 구조물 파괴형상 변화에 대한 메조스케일 해석

  • Kim, Ju-Whan;Hong, Jung-Wuk;Lim, Yun-Mook
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.413-417
    • /
    • 2005
  • A lattice model of a typical bridge column section is analyzed, and results are presented. The lattice is built as an ensemble of line elements and masses, that can capture strain rate dependency of concrete material. The research mainly breaks up into two parts: First, a micro level analysis of the material is executed, and control parameters of the governing equations are derived by matching the results with the common macroscopic properties of concrete material. Then, the properties exhibited by the micro model, which extends the classical material properties are applied to the mesoscale model. Hence, the analysis of the target structure can be performed. In the mesoscale analysis, ramp-like impulse loads are applied at different velocity, so that the contribution of the material level rate dependency to the global behavior of the structure can be tracked.

  • PDF