• 제목/요약/키워드: Raman effect

검색결과 374건 처리시간 0.026초

Preparation and characterization of isotropic pitch-based carbon fiber

  • Zhu, Jiadeng;Park, Sang Wook;Joh, Han-Ik;Kim, Hwan Chul;Lee, Sungho
    • Carbon letters
    • /
    • 제14권2호
    • /
    • pp.94-98
    • /
    • 2013
  • Isotropic pitch fibers were stabilized and carbonized for preparing carbon fibers. To optimize the duration and temperature during the stabilization process, a thermogravimetric analysis was conducted. Stabilized fibers were carbonized at 1000, 1500, and $2000^{\circ}C$ in a furnace under a nitrogen atmosphere. An elemental analysis confirmed that the carbon content increased with an increase in the carbonization temperature. Although short graphitic-like layers were observed with carbon fibers heat-treated at 1500 and $2000^{\circ}C$, Raman spectroscopy and X-ray diffraction revealed no significant effect of the carbonization temperature on the crystalline structure of the carbon fibers, indicating the limit of developing an ordered structure of isotropic pitch-based carbon fibers. The electrical conductivity of the carbonized fiber reached $3.9{\times}10^4$ S/m with the carbonization temperature increasing to $2000^{\circ}C$ using a four-point method.

바나듐과 프라세오디뮴을 사용한 지르콘녹색안료의 광학적 특성 (Optical Properties of (V, Pr)-doped ZrSiO4 Green Pigments)

  • 변규리;이병하
    • 한국세라믹학회지
    • /
    • 제47권3호
    • /
    • pp.249-255
    • /
    • 2010
  • To investigate optical properties of (V, Pr)-doped $ZrSiO_4$ green pigments, samples were prepared by the ceramic method using NaF and NaCl as mineralizers. They were characterized by X-ray diffraction, UV-Vis spectroscopy and Raman spectroscopy. The changes of color in the samples during heating and effect of mineralizers were studied in terms of valence of the vanadium and praseodymium in the zircon matrix. (V, Pr)-doped $ZrSiO_4$ pigments give rise to green coloration in $800^{\circ}C$. The oxidation state of V and Pr ions of pigments in the glazed samples were confirmed by UV-Vis absorption spectra. This absorption spectra showed three typical bands of trivalent Pr at the 445, 480~490, 592 nm due to f-f transitions and two broad bands of 302~380, 400~500 nm due to f-d transitions of tetravalent Pr. According to the increasing amounts of $Pr_6O_{11}$, the two broad bands showed decreasing intensity at 290, 640 nm due to d-d transitions of tetravalent V.

기판 온도가 다이아몬드 박막의 Morphology에 미치는 영향 (Effect of Substrate Temperature on the Morphology of Diamond Films by MPCVD)

  • 박영수;김상훈;김동호;이조원
    • 한국재료학회지
    • /
    • 제4권4호
    • /
    • pp.385-392
    • /
    • 1994
  • Microwave플라즈마 화학 증착법으로 다이아몬드 박막을 증착하여 morphology변화를 관찰하였다. 기판 온도가 $550^{\circ}C$에서 $750^{\circ}C$로 증가함에 따라 다이아몬드 박막의 표면 morpholoty는 {111}에서 {100}, cauliflower형태로 변화하는 것과 함께, 증착층내의 nondiamond성분이 증가하는 것을 발견하였다. 증착 층 내에 존재하는 nondiamond성분은 다이아몬드 입자의 입계에 분포하고 있음을 마이크로 Raman분석으로부터 추측할 수 있었다. 증착층의 texture orientation 을 X-선 회절 분석기로 확인한 결과, $550^{\circ}C$에서는 증착층의 texture orientation이 관찰되지 않았지만 온도가 증가함에 따라 <100>에서 <110>으로 변화하는 것을 관찰할 수 있었다.

  • PDF

Multi-wavelength Raman LIDAR for Use in Determining the Microphysical, Optical, and Radiative Properties of Mixed Aerosols

  • Lee, Kwon-Ho;Noh, Young Min
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권1호
    • /
    • pp.91-99
    • /
    • 2015
  • The Multi-wavelength Raman LIDAR (MRL) system was developed to enable a better understanding of the complex properties of aerosols in the atmosphere. In this study, the microphysical, optical, and radiative properties of mixed aerosols were retrieved using the discrete aerosol observation products from the MRL. The dust mixing ratio, which is the proportion of dust particles to the total mixed, was derived using the particle depolarization ratio. It was employed in the retrieval of backscattering and extinction coefficient profiles for dust and non-dust particles. The vertical profiles of aerosol optical properties were then used as input parameters in the inversion algorithm for the retrieval of microphysical parameters including the effective radius, refractive index, and the single scattering albedo (SSA). Those products were successfully applied to an analysis of radiative flux using a radiative transfer model. The relationship between the MRL derived extinction and aerosol radiative forcing (ARF) in short-wavelength was assessed over Gwangju, Korea. The results clearly demonstrate that the MRL-derived extinction profiles are a good surrogate for use in the estimation of optical, microphysical, and radiative properties of aerosols. It is considered that the analytical results shown in this study can be used to provide a better understanding of air quality and the variation of local radiative effects due to aerosols.

Effect of Inherent Anatomy of Plant Fibers on the Morphology of Carbon Synthesized from Them and Their Hydrogen Absorption Capacity

  • Sharon, Madhuri;Sharon, Maheshwar
    • Carbon letters
    • /
    • 제13권3호
    • /
    • pp.161-166
    • /
    • 2012
  • Carbon materials were synthesized by pyrolysis from fibers of Corn-straw (Zea mays), Rice-straw (Oryza sativa), Jute-straw (Corchorus capsularis) Bamboo (Bombax bambusa), Bagass (Saccharum officinarum), Cotton (Bombax malabaricum), and Coconut (Cocos nucifera); these materials were characterized by scanning electron microscope, X-ray diffraction (XRD), and Raman spectra. All carbon materials are micro sized with large pores or channel like morphology. The unique complex spongy, porous and channel like structure of Carbon shows a lot of similarity with the original anatomy of the plant fibers used as precursor. Waxy contents like tyloses and pits present on fiber tracheids that were seen in the inherent anatomy disappear after pyrolysis and only the carbon skeleton remained; XRD analysis shows that carbon shows the development of a (002) plane, with the exception of carbon obtained from bamboo, which shows a very crystalline character. Raman studies of all carbon materials showed the presence of G- and D-bands of almost equal intensities, suggesting the presence of graphitic carbon as well as a disordered graphitic structure. Carbon materials possessing lesser density, larger surface area, more graphitic with less of an $sp^3$ carbon contribution, and having pore sizes around $10{\mu}m$ favor hydrogen adsorption. Carbon materials synthesized from bagass meet these requirements most effectively, followed by cotton fiber, which was more effective than the carbon synthesized from the other plant fibers.

Influence of Heating Rate and Temperature on Carbon Structure and Porosity of Activated Carbon Spheres from Resole-type Phenolic Beads

  • Singh, Arjun;Lal, Darshan
    • Carbon letters
    • /
    • 제10권3호
    • /
    • pp.181-189
    • /
    • 2009
  • Activated carbon spheres (ACS) were prepared at different heating rates by carbonization of the resole-type phenolic beads (PB) at $950^{\circ}C$ in $N_2$ atmosphere followed by activation of the resultant char at different temperatures for 5 h in $CO_2$ atmosphere. Influence of heating rate on porosity and temperature on carbon structure and porosity of ACS were investigated. Effect of heating rate and temperature on porosity of ACS was also studied from adsorption isotherms of nitrogen at 77 K using BET method. The results revealed that ACS have exhibited a BET surface area and pore volume greater than $2260\;m^2/g$ and $1.63\;cm^3/g$ respectively. The structural characteristics variation of ACS with different temperature was studied using Raman spectroscopy. The results exhibited that amount of disorganized carbon affects both the pore structure and adsorption properties of ACS. ACS were also evaluated for structural information using Fourier Transform Infrared (FTIR) Spectroscopy. ACS were evaluated for chemical composition using CHNS analysis. The ACS prepared different temperatures became more carbonaceous material compared to carbonized material. ACS have possessed well-developed pores structure which were verified by Scanning Electron Microscopy (SEM). SEM micrographs also exhibited that ACS have possessed well-developed micro- and meso-pores structure and the pore size of ACS increased with increasing activation temperature.

Parametric Study of Methanol Chemical Vapor Deposition Growth for Graphene

  • Cho, Hyunjin;Lee, Changhyup;Oh, In Seoup;Park, Sungchan;Kim, Hwan Chul;Kim, Myung Jong
    • Carbon letters
    • /
    • 제13권4호
    • /
    • pp.205-211
    • /
    • 2012
  • Methanol as a carbon source in chemical vapor deposition (CVD) graphene has an advantage over methane and hydrogen in that we can avoid optimizing an etching reagent condition. Since methanol itself can easily decompose into hydrocarbon and water (an etching reagent) at high temperatures [1], the pressure and the temperature of methanol are the only parameters we have to handle. In this study, synthetic conditions for highly crystalline and large area graphene have been optimized by adjusting pressure and temperature; the effect of each parameter was analyzed systematically by Raman, scanning electron microscope, transmission electron microscope, atomic force microscope, four-point-probe measurement, and UV-Vis. Defect density of graphene, represented by D/G ratio in Raman, decreased with increasing temperature and decreasing pressure; it negatively affected electrical conductivity. From our process and various analyses, methanol CVD growth for graphene has been found to be a safe, cheap, easy, and simple method to produce high quality, large area, and continuous graphene films.

Effect of Doping Si in DLC Thin Films Growth on Their Mechanical Properties

  • 김대영;박민석;진인태
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.369.2-369.2
    • /
    • 2014
  • Diamond-like Carbon(DLC) films doping Si were deposited by linear ion source(LIS)-physical vapor deposition method on Si wafer. We have studied the effects of Si content on friction and wear properties of DLC films and the characteristics of the films were investigated using Nano-indentation, Micro raman spectroscopy, Field Emission-Scanning Electron Microscope (FM-SEM) and X-ray Photoelectron Spectroscopy (XPS). The films has been various low-friction and low-stress by varying the flow rates of silane gas. Under the about 2% of Si doping is very suitable for improving the adhesion of films and reducing internal stress while maintaining the surfaces hardness of DLC films. Linear ion source (LIS)를 사용하여 Si wafer위에 Si 이온이 첨가된 DLC 박막을 증착하였다. 참가된Si 이온의 양에 따라 DLC 박막에 미치는 영향을 분석하기 위하여 마찰 계수 및 경도를 비교하였고, Micro raman spectroscopy, Field Emission-Scanning Electron Microscope (FM-SEM) and X-ray Photoelectron Spectroscopy (XPS)를 통하여 표면 상태를 분석하였다. 천체 주입된 가스량의 약 2%까지 Si 이온 주입이 늘어날수록 DLC 박막의 마찰계수는 낮아졌고, 경도는 Si 이온이 주입되지 않았을 경우와 비슷한 값(약 20~23 GPa)을 가졌다. 2% 이상의 주입량에서는 마찰계수는 주입량이 늘어날수록 높아졌으며 경도는 떨어지는 경향을 보였다. 이는 Si이온이 2%이하로 첨가되었을 경우, DLC 박막의 생성시 탄소 이온들의 결합 Stress를 줄여 마찰계수가 줄어든다고 볼 수 있으며, 그 양이 2%이상이 되면 오히려 불순물로 작용하여 DLC 박막의 Stress는 급격히 증가하고 마찰계수도 높아짐을 알 수 있다.

  • PDF

Silver Sol과 Silver Mirror Substrate를 이용한 Fluorescein의 SERS 연구 (SERS Study of Fluorescein Using the Silver Sol and Silver Mirror Substrates)

  • 이철재;최현국;정맹준
    • 한국산업융합학회 논문집
    • /
    • 제10권1호
    • /
    • pp.27-32
    • /
    • 2007
  • It has been recently reported that the SERS (Surface Enhanced Raman Scattering) effect of the silver mirror substrate made by Tollen's method is much superior to that of other substrates. In this study, the experiments for comparison of surface enhancement of silver sol and silver mirror substrates were done, where we checked the characteristics of silver mirror substrate made by Tollen's method. The surface enhancement of fluorescein was analyzed by silver sol and silver mirror substrates. We observed the SERS spectra of fluorescein. The assignments of the vibrational bands shown in SERS spectra are given based on both literature and the semi-empirical calculations at the PM3 methods. The surface enhancement properties for fluorescein showed that the silver mirror was more superior to sliver sol substrates. Spectra of fluorescein revealed that fluorescein was adsorbed on silver surfaces by a common oxygen atom. According to the 'surface selection rule', the vibrations in the band intensities reflect the adsorption orientation of the molecule on to the surface of SERS substrates. Therefore, we deduced that the adsorption orientation of fluorescein was little tilted perpendicular to the silver surfaces by using of the surface selection rules.

  • PDF

FCVA 방법으로 증착된 DLC 박막의 열처리에 따른 구조적 물성 분석 (Effects of Thermal Treatment on Structural Properties of DLC Films Deposited by FCVA Method)

  • 김영도;장석모;박창균;엄현석;박진석
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권8호
    • /
    • pp.325-329
    • /
    • 2003
  • Effects of thermal treatment on the structural properties of diamond-like carbon (DU) films were examined. The DLC films were deposited by using a modified filtered cathodic vacuum arc (FCVA) deposition system and by varying the negative substrate bias voltage, deposition time, and nitrogen flow rate. Thermal treatment on DLC films was performed using a rapid thermal annealing (RTA) process at $600^{\circ}C$ for 2min. Raman spectroscopy, x-ray photoemission spectroscopy (XPS), atomic force microscope (AFM), and surface profiler were used to characterize the I$_{D}$I$_{G}$ intensity ratio, sp$^3$ hybrid carbon fraction, internal stress, and surface roughness. It was found for all the deposited DLC films that the RTA-treatment results in the release of internal compressive stress, while at the same time it leds to the decrease of sp$^3$ fraction and the increase of I$_{D}$I$_{G}$ intensity ratio. It was also suggested that the thermal treatment effect on the structural property of DLC films strongly depends on the diamond-like nature (i.e., sp$^3$ fraction) of as-deposited film.ed film.