• Title/Summary/Keyword: Raman effect

Search Result 374, Processing Time 0.033 seconds

Effect of the catalyst deposition rates on the growth of carbon nanotubes

  • Ko, Jae-Sung;Choi, In-Sung;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.264-264
    • /
    • 2010
  • Single-walled carbon nanotubes (SWCNTs) were grown on a Si wafer by using thermal chemical vapor deposition (t-CVD). We investigated the effect of the catalyst deposition rate on the types of CNTs grown on the substrate. In general, smaller islands of catalyst occur by agglomeration of a catalyst layer upon annealing as the catalyst layer becomes thinner, which results in the growth of CNTs with smaller diameters. For the same thickness of catalyst, a slower deposition rate will cause a more uniformly thin catalyst layer, which will be agglomerated during annealing, producing smaller catalyst islands. Thus, we can expect that the smaller-diameter CNTs will grow on the catalyst deposited with a lower rate even for the same thickness of catalyst. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. The catalyst layers were. coated by using thermal evaporation. The deposition rates of the Al and Fe layers varied to be 90, 180 sec/nm and 70, 140 sec/nm, respectively. We prepared the four different combinations of the deposition rates of the AI and Fe layers. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of $H_2$ as a carrier gas and 20 sccm of $C_2H_2$ as a feedstock at 95 torr and $810^{\circ}C$. The substrates were subject to annealing for 20 sec for every case to form small catalyst islands prior to CNT growth. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, UV-Vis NIR spectroscopy, and atomic force microscopy. The fast deposition of both the Al and Fe layers gave rise to the growth of thin multiwalled CNTs with the height of ${\sim}680\;{\mu}m$ for 10 min while the slow deposition caused the growth of ${\sim}800\;{\mu}m$ high SWCNTs. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of $113.3{\sim}281.3\;cm^{-1}$, implying the presence of SWCNTs (or double-walled CNTs) with the tube diameters 2.07~0.83 nm. The Raman spectra of the as-grown SWCNTs showed very low G/D peak intensity ratios, indicating their low defect concentrations.

  • PDF

The Effect of Crystallization by Heat Treatment on Electromagnetic Interference Shielding Efficiency of Carbon Fibers (열처리 온도에 의한 구조 결정성이 탄소섬유의 전자파 차폐 성능에 미치는 영향)

  • Kim, Jong Gu;Chung, Choul Ho;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.138-143
    • /
    • 2011
  • To investigate the electromagnetic interference shielding efficiency (EMI SE) property based on heat treatment effects of carbon fibers in various temperatures, the polyacrilonitrle-based carbon fibers were prepared by electrospinning method and treated at 1073, 1323, 1873 and 2573 K. The surface morphology of carbon fibers was investigated by using FE-SEM and the carbon crystallization was studied by Raman spectroscopy based on effects of reaction temperatures. The electrical conductivity was obtained by measuring the surface resistance with four probe method on carbon crystallization. The permittivity, permeability and EMI SE were investigated by using S-parameter in the range of 800~4500 MHz. In case of carbon fibers treated at 2573 K, the improved carbon crystallization was confirmed by Raman spectrum and the enhanced electrical conductivity showing 54.7 S/cm was also observed. The permittivity was dramatically improved by factor of 4 based on effect of high reaction temperature. Eventually, the highly improved EMI SE value was obtained showing around 41.7 dB.

Effect of Guest Molecules on Structure and Properties of Polymer/beta-Cyclodextrin Inclusion Compound Hybrid Films (고분자/베타-사이클로덱스트린 포접 화합물로 이루어진 고분자 혼성체 필름의 물성 및 구조에 미치는 게스트 분자의 영향)

  • Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.504-508
    • /
    • 2021
  • In this study, the effect of molecular features of guest molecules on the structure, property, and formation of poly(vinyl alcohol) (PVA)/beta-cyclodextrin (bCD) inclusion compound hybrid films was investigated using three types of guest molecules such as hydroquinone (HQ), arbutin (AB), and tranexamic acid (TA). First, the successful formation of inclusion compounds between bCD and the guest molecules, and polymer/inclusion compound hybrid were proved using Raman spectroscopy. The effect of bCD-based inclusion compounds on the structure and property of PVA matrix composites containing inclusion compounds was also studied using X-ray diffraction (XRD) and thermal analyses such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was notable that the effect of TA to the crystalline structure of the PVA was significantly different from that of using other guest molecules including HQ and AB. It was also supported by a simple molecular simulation result. This article will be a good example for demonstrating the effect of molecular characteristics on the inclusion compound formation in polymer films, which can provide important information for relevant future research.

The Study on the Skin Penetration of Cosmetic Ingredient with in vivo Raman Spectroscopy and in vitro Franz Cell (라만 분광 피부 측정기를 이용한 기능성 화장품 성분의 in vivo 피부 투과 측정 및 in vitro 비교 평가 연구)

  • Jeon, Serim;Han, Min-Hee;Chung, Dae-Kyun;Hwang, Jae-Sung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • At present, there are few research papers on skin penetration of cosmeceutical ingredients. What is worse is that in vivo studies are hard to find. In this study, we measured skin epidermal penetration of cosmeceutical ingredients using in vivo Raman spectroscopy and compared with the results obtained from experiments using in vitro franz cell. Results showed that ascorbyl-2-glucoside, retinol, retinyl palmitate, and kojic acid were good for penetration ratio in measurement in vitro and retinol, vitamin C, and arbutin were good in measurement in vivo. Among them, retinol was best in skin penetration in vivo experiment using Raman spectroscopy and ascorbyl-2-glucoside was best in skin penetration in vitro experiment using Franz cell system. It is estimated that the differences were originated from the experimental procedures of two different methods; in vivo Raman experiment can be sensitive to the effect of epidermis and dermis as characteristics of matter by estimating the stratum corneum and in vitro measurement is evaluation of material to penetrate skin of hairless mouse. However, most penetration barrier is the stratum corneum, thus it is important to examine movement of material in the stratum corneum. We expect that these results provided useful information for many cosmetic related research.

Optical Gap Bowing and Phonon Modes of Amorphous Ge1-x-ySexAsy Thin Films

  • So, Hyeon-Seop;Park, Jun-U;Jeong, Dae-Ho;Lee, Ho-Seon;Sin, Hye-Yeong;Yun, Seok-Hyeon;An, Hyeong-U;Kim, Su-Dong;Lee, Su-Yeon;Jeong, Du-Seok;Jeong, Byeong-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.288.1-288.1
    • /
    • 2014
  • We investigated the optical properties of Ge1-xSex and Ge1-x-ySexAsy amorphous semiconductor films using spectroscopic ellipsometry and Raman spectroscopy. The dielectric functions and absorption coefficients of the amorphous films were determined from the measured ellipsometric angles. We obtained the optical gap energies and Urbach energies from the absorption coefficients, and found a strong bowing effect in the optical gap energy of Ge1-x-ySexAsy where the endpoint binaries were Ge0.50Se0.50 and Ge0.31As0.69. Based on the correlation between optical gap energies and Urbach energies, the large bowing parameter was attributed to the electronic disorder. We found the composition dependence of several phonon modes using Raman spectroscopy. For Ge1-x-ySexAsy, the D mode (232-267 cm-1) changed from As-As (or As3 pyramid), to As(Se1/2)3 pyramid, and finally to Se clusters, as the Se composition increased. Resonant Raman phenomenon was observed in Ge0.38Se0.62 at a laser excitation of 514 nm (2.41 eV). We verified that this laser energy corresponds to the transition energy of Ge0.38Se0.62 using the second derivative of the dielectric function of Ge0.38Se0.62.

  • PDF

Effect of Drying Methods on the Production of Graphenes Oxide Powder Prepared by Chemical Exfoliation (화학적 박리법으로 제조된 산화그래핀 분말의 건조방법에 따른 물성 비교)

  • Rho, Sangkyun;Noh, Kyung-Hun;Eom, Sung-Hun;Hur, Seung Hyun;Lim, Hyung Mi
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.592-598
    • /
    • 2013
  • Graphene oxide powders prepared by two different drying processes, freeze drying and spray drying, were studied to compare the effect of the drying method on the physical properties of graphene oxide powder. The graphene oxide dispersion was prepared from graphite by chemical delamination with the aid of sulfuric acid and permanganic acid, and the dispersion was further washed and re-dispersed in a mixed solvent of water and isopropyl alcohol. A freeze drying method can feasibly minimize damage to the sample, but it requires a long process time. In contrast, spray drying is able to remove a solvent in a relatively short time, though this process requires exposure to a high temperature for a rapid evaporation of the solvent. The powders prepared by freeze drying and spray drying were characterized and compared by Raman spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and by an elemental analysis. The graphene oxide powders showed similar chemical compositions; however, the morphologies of the powders differed in that the graphene oxide prepared by spray drying had a winkled morphology and a higher apparent density compared to the powder prepared by freeze drying. The graphene oxide powders were reduced at $900^{\circ}C$ in an atmosphere of $N_2$. The effect of the drying process on the properties of the reduced graphene oxide was examined by SEM, TEM and Raman spectroscopy.

Raman Spectroscopy Analysis of Graphene Films Grown on Ni (111) and (100) Surface (니켈 (111)과 (100) 결정면에서 성장한 그래핀에 대한 라만 스펙트럼 분석)

  • Jung, Daesung;Jeon, Cheolho;Song, Wooseok;An, Ki-Seok;Park, Chong-Yun
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.194-202
    • /
    • 2016
  • A graphene film, two-dimensional carbon sheet, is a promising material for future electronic devices and so on. In graphene applications, the effect of substrate on the atomic/electronic structures of graphene is significant, so we studied an interaction between graphene film and substrate. To study the effect, we investigated the graphene films grown on Ni substrate with two crystal face of (111) and (100) by Raman spectroscopy, comparing with graphene films transferred on $SiO_2/Si$ substrate. In our study, the doping effect caused by charge transfer from Ni or $SiO_2/Si$ substrate to graphene was not observed. The bonding force between graphene and Ni substrate is stronger than that between graphene and $SiO_2/Si$. The graphene films grown on Ni substrate showed compressive strain and the growth of graphene films is incommensurate with Ni (100) lattice. The position of 2D band of graphene synthesized on Ni (111) and (100) substrate was different, and this result will be studied in the near future.

The Photovoltaic Effect of Iodine-Doped Metal Free Phthalocyanine/ZnO System (Ⅰ) (요오드가 도핑된 무금속 프탈로시아닌/산화아연계의 광기전력 효과(Ⅰ))

  • Heur, Soun-Ok;Kim, Young-Soon;Park, Yoon-Chang
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.3
    • /
    • pp.163-175
    • /
    • 1995
  • Metal free phthalocyanine($H_2Pc$) partially doped with iodine, $H_2Pc(I)x$, has been made to improve photosensitizing efficiency of ZnO/$H_2Pc$. The content of iodine dopant level(x) for $H_2Pc(I)x$ upon $H_2Pc$ polymorphs was characterized as ${\chi}-H_2Pc(I)_{0.92}$ and ${\beta}-H_2Pc(I)_{0.96}$ by elemental analysis. Characterization of iodine-oxidized $H_2Pc$ were investigated by TGA (thermogravimetric analysis), UV-Vis, FT-IR, Raman and ESR (electron spin resonance) spectrum, and the adsorption properties of $H_2Pc(I)x$ on ZnO were characterized by means of Raman and ESR studies. TGA for $H_2Pc(I)x$ showed a complete loss of iodine at approximately 265$^{\circ}C$ and the Raman spectrum of $H_2Pc(I)x$ and ZnO/$H_2Pc(I)x$ at 514.5 nm showed characteristic $I_3^-$ patterns in the frequency region 90∼550 $cm^{-1}$. ZnO/$H_2Pc(I)x$ exhibited a very intense and narrow ESR signal at $g=2.0025{\pm}0.0005$ compared to $H_2Pc$/ZnO. Iodine doped ZnO/$H_2Pc(I)x$ showed a better photosensitivity compared to iodine undoped ZnO/$H_2Pc$. That is, the surface photovoltage of ${\chi}-H_2Pc(I)_{0.92}$/ZnO was approximately 31 times greater than that of ZnO/${\chi}-H_2Pc$ and ZnO/${\beta}-H_2Pc(I)_{0.96}$ was 5 times more efficient than ZnO/${\beta}-H_2Pc$ at 670 nm. And the dependence of photosensitizing effect upon $H_2Pc$ polymorphs was exhibited that the surface photovoltage of ZnO/${\chi}-H_2Pc(I)_{0.92}$ was approximately 5 times greater than ZnO/${\beta}-H_2Pc(I)_{0.96}$ at 670 nm. Therefore Iodine doping of H_2Pc$ resulted in increase in photoconductivity of $H_2Pc$ and photovoltaic effect of ZnO/$H_2Pc$ in the visible region.

  • PDF

Optical Hydrogen Sensor Based on Gasochromic $RuO_2{\cdot}xH_2O$ Thin Film ($RuO_2{\cdot}xH_2O$ 박막의 가스채색 현상을 이용한 수소검지 광센서)

  • Cheong, Hyeon-Sik;Jo, Hyun-Chol;Kim, Kyung-Moon
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • We studied the electrochromic properties of hydrated amorphous ruthenium oxide ($RuO_2{\cdot}xH_2O$) thin films using in-situ Raman spectroscopy during electrochemical charging/discharging cycles. We have found that the principal effect of hydrogen insertion into $RuO_2{\cdot}xH_2O$ is reduction of $Ru^{4+}\;to\;Ru^{3+}$, and not formation of new bonds involving hydrogen. We compared the changes in the Raman spectrum of a gasochromic $Pd/RuO_2{\cdot}xH_2O$ film as it is exposed to hydrogen gas with that of electrochemical hydrogen insertion. We tested the changes in the optical transmission of the $Pd/RuO_2{\cdot}xH_2O$ film when exposed to hydrogen gas.

Deposition and Characterization of Graphene Materials Deposited through Thermal Chemical Vapor Deposition

  • Kwon, Kyoung-Woo;Bae, Seung-Muk;Yeop, Moon-Soo;Kim, Ji-Soo;Ko, Myong-Hee;Jung, Min-Wook;An, Ki-Seok;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.362-362
    • /
    • 2012
  • Graphene-based materials have been gaining the unprecedented academic and industrial applications, due to the unique charge transport as a new kind of 2-dimensional materials. The applications incorporate electronic devices, nonvolatile memories, batteries, chemical sensors, etc. based on the electrical, mechanical, structural, optical, and chemical features newly reported. The current work employs thermal chemical vapor deposition involving H2 and CH4, in order to synthesize the 2-dimensional graphene materials. The qualitative/quantitative characterizations of the synthesized graphene materials are evaluated using Raman spectroscopy and Hall Measurements, In particular, the effect of processing variables is systematically investigated on the formation of graphene materials through statistical design of experiments. The optimized graphene materials will be attempted towards the potential applications to flat-panel displays.

  • PDF