• Title/Summary/Keyword: Raman Gain

Search Result 30, Processing Time 0.021 seconds

Forward Raman amplification for the narrow band Stokes line by double-pass fiber Raman scheme in multi-mode fiber

  • Hwang, In-Duk;Lee, Choo-Hie
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.238-239
    • /
    • 2000
  • The optical fibers are an interesting medium for effective tunable optical frequency conversion in the spectral range of UV, Visible, and near-IR through the nonlinear processes. A number of papers for developing the wideband and flat-gain amplifier for the WDM system applications through the combination of EDFA or thulium-doped fluoride fiber amplifier and Raman amplifier, are reported$^{(1)}$ . Even though a variety of papers related to Raman amplifications are published, the amplification with the feedback of the residual pump is not investigated yet. Accordingly, in this paper, we report the characteristics of forward Raman amplification by the simple and double-pass fiber Raman configuration through the feedback of residual pump beam. (omitted)

  • PDF

Simulation and Experimental Validation of Gain-Control Parallel Hybrid Fiber Amplifier

  • Ali, Mudhafar Hussein;Abdullah, Fairuz;Jamaludin, Md. Zaini;Al-Mansoori, Mohammed Hayder;Al-Mashhadani, Thamer Fahad;Abass, Abdulla Khudiar
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.657-662
    • /
    • 2014
  • We demonstrate a simulation of a parallel hybrid fiber amplifier in the C+L-band with a gain controlling technique. A variable optical coupler is used to control the input signal power for both EDFA and RFA branches. The gain spectra of the C+L-band are flattened by optimizing the coupling ratio of the input signal power. In order to enhance the pump conversion efficiency, the EDFA branch was pumped by the residual Raman pump power. A gain bandwidth of 60 nm from 1530 nm to 1590 nm is obtained with large input signal power less than -5 dBm. The gain variation is about 1.06 dB at a small input signal power of -30 dBm, and it is reduced to 0.77 dB at the large input signal power of -5 dBm. The experimental results show close agreement with the simulation results.

Equivalence Ratio Measurements in Gas Spray Using Laser Raman Scattering (Laser Raman Scattering을 이용한 가스 분무내 당량비 계측에 관한 연구)

  • Jin, S.H.;Park, K.S.;Song, J.I.;Kim, G.S.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.7-14
    • /
    • 1997
  • Laser Raman scattering method has been applied to measure equivalence ratio of methane/air mixture in injected spray. We used high power KrF excimer laser$(\lambda=248nm)$ and a high gain ICCD camera to capture low intensity signal. Raman shifts and Raman scattering cross -sections of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4\;and\;C_3H_8$ are measured precisely. Our results show an excellent agreement with those of other groups. Mole fraction measurement of $O_2\;and\;N_2$ from air shows that $O_2:N_2=0.206:0.794$. We used gas injector which was operated at 1 bar. Methane is used as a fuel. Spray region is $10mm\times37mm$ and this region is divided into 80 points. In Raman signals are obtained and ensemble averaged for each point. 3-d and contour plot of distribution of equuivalence ratio is presented. Our measured results show that the equivalence ratio of methane/air mixture in methane-rich region is reasonable. However, more study is necessary for methane-lean region because background noise level is almost same as Raman intensity of methane.

  • PDF

Cascaded Raman fiber amplifier operating at 1.3.mu.m using WDM couplers

  • Chang, Do-Il;Kong, Hong-Jin;Chernikov, S.V.;Guy, M.-J.;Taylor, J. R.
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.110-115
    • /
    • 1997
  • We report effcient cascaded Raman generation and signal amplification at 1.3.mu.m achieved in a ring resonator constructed solely from fiber components, i.e. fusion WDM couplers. Low-loss single-mode fiber with moderate $GeO_2$ content (18 mole %) is used as an active medium and pumped by a Nd:YAG laser at 1.064.mu.m. In a resonant cascaded geometry, this generates the third Stokes line at 1.24.mu.m, which acts as a pump for signal wavelength around 1.3.mu.m. A DFB laser operating at 1.315.mu.m is used to provide an input signal. An output signal powers up to 20 dBm (100 mW) with a 28 dB Raman gain are attained, where the Nd:YAG pump power is 3.4 W. It is also shown experimentally that it is important to use optical filters to suppress feedback from the resonator, permitting high Raman gain and good signal quality.

A Study on Quantitative Measurements of Equivalence Ratio in Constant Volume Chamber Using UV Laser Raman Scattering (UV Laser Raman Scattering을 이용한 정적 연소기내 분사된 연료의 정량적 당량비 측정에 관한 연구)

  • Jin, S.H.;Heo, H.S.;Kim, G.S.;Park, K.S.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.35-42
    • /
    • 1998
  • Laser Raman scattering method has been applied to measure equivalence ratio of methane/air and propane/air mixture in constant volume combustion chamber. We used high power KrF excimer laser$(\lambda=248nm)$ and a high gain ICCD camera to capture low intensity Raman signal. Raman shifts and Ram cross-sections of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4\;and\;C_3H_8$ were measured precisely. Our results showed an excellent agreement with other groups. Mole fraction measurement of $O_2\;and\;N_2$ from air showed that $O_2\;:\;N_2$ = 0.206 : 0.794. We used constant volume combustion chamber and gas injector which is operated at $5\sim10barg$. Methane and propane are used as a fuel. 50 Raman signal are obtained and ensemble averaged for measurement of equivalence ratio. Our measured results showed that the equivalence ratio of fuel/air mixture is reasonable at ${\pm}5%$ error range.

  • PDF

Fuzzy Adaptive Modified PSO-Algorithm Assisted to Design of Photonic Crystal Fiber Raman Amplifier

  • Akhlaghi, Majid;Emami, Farzin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.237-241
    • /
    • 2013
  • This paper presents an efficient evolutionary method to optimize the gain ripple of multi-pumps photonic crystal fiber Raman amplifier using the Fuzzy Adaptive Modified PSO (FAMPSO) algorithm. The original PSO has difficulties in premature convergence, performance and the diversity loss in optimization as well as appropriate tuning of its parameters. The feasibility and effectiveness of the proposed hybrid algorithm is demonstrated and results are compared with the PSO algorithm. It is shown that FAMPSO has a high quality solution, superior convergence characteristics and shorter computation time.

Wavelength-Swept Cascaded Raman Fiber Laser around 1300 nm for OCT Imaging

  • Lee, Hyung-Seok;Lee, Hwi Don;Jeong, Myung-Yung;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.154-158
    • /
    • 2015
  • We experimentally demonstrated a novel wavelength-swept laser using a cascaded Raman gain around 1310 nm. A 1064/1310 wavelength division multiplexing (WDM) coupler and coupled fiber Bragg gratings mirrors at 1064, 1117, 1175, 1240 nm are effectively used to increase the power efficiency in a laser ring cavity with highly non-linear fiber (HNLF) of 2 km. Linear wavelength sweeping is demonstrated with the 100 Hz triangular driving signal to fiber Fabry-Perot tunable filter (FFP-TF) around the 1310 nm region. The measured sweeping range and output power were 27 nm and 2.1 mW, respectively, which are suitable for optical coherence tomography (OCT) imaging.

Visualization of Laser Pulse Amplification by Raman Backscattering (라만 후방향산란을 이용한 레이저 펄스 증폭 가시화)

  • Lee Hae-June;Kim Jin-Cheol;Kim Changbum;Kim Guang-Hoon;Kim Jong-Uk;Suk Hy-yong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.73-76
    • /
    • 2002
  • A one-dimensional fluid model has been established for Raman amplification of a short laser pulse in a plasma by a counter-propagating pump. The laser pulse is amplified with a large gain and also may be compressed by nonlinear three-wave Interactions. The spatiotemporal evolutions of the seed and the pump pulses were visualized for linear and nonlinear regimes, and the transition from regular to chaotic behavior of subsidiary pulses was investigated with variation of pump intensity.

  • PDF