• 제목/요약/키워드: Rake Face

검색결과 40건 처리시간 0.023초

적삭중인 공구의 경사면상에 crack을 갖는 경우의 응력해석에 관한 연구 (A study on the stress analysis for rake face of a tool with crack in cutting process)

  • 김원익;남준우
    • 오토저널
    • /
    • 제9권3호
    • /
    • pp.66-75
    • /
    • 1987
  • The determination of stress distributions on the rake face of tool are important to understand the mechanism of metal cutting. For this reason, many researchers have been payed much effort to analyize machining stress distribution on the rake face. The author's photoelastic experiment has shown that the stress distributions on a rake face can be obtained photoelastically by using a specially designed tool made of epoxy resin plate, and also, Stress Intensity Factors $k_{I}$, $k_{II}$ and Crack Extension Angle can be deter mined by using Linear Elastic Fracture Mechanics.ics..

  • PDF

2차원 선삭시 유한요소법에 의한 고속도강공구의 절삭온도 예측 (Prediction of Cutting Temperature at High Speed Steel in Orthogonal Turning based on Finite Element Method)

  • 전태옥;배춘익
    • 한국정밀공학회지
    • /
    • 제12권10호
    • /
    • pp.102-112
    • /
    • 1995
  • Temperature distribution on the rake face and flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junction imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on both the rake face and flank face of cutting tool with high speed steel. The analytical results show that the temperature on the top flank face of a tool is higher than it on the top rake face of the tool because of the difference of the friction velocity on each face of the tool.

  • PDF

정면밀링에서 공구경사각에 따른 비절삭저항 변화 (Variation of Specific Cutting Pressure with Different Tool Rake Angles in Face Milling)

  • 류시형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.63-68
    • /
    • 1996
  • In this study, the effect of tool rake angles and the change of cutting conditions on specific cutting pressure in face milling is investigated. The cutting force in face milling is predicted from the double cutting edge model in 3-dimensional cutting. Conventional specific cutting pressure model is modified by considering the variation of tool rake angles. Effectiveness of the modified cutting force model is verified by the experiments using special face milling cutters with different cutter pockets and various rake angles. From the comparison of the pressented model and the specific cutting pressure, it is shown that the axial force can be predicted by the tangential and redial forces without the knowledge of friction angle and shear angle. Also, the relation between specific cutting pressure and cutting cindition including feedrate, cutting velocity and depth of cut is studied.

  • PDF

정면밀리에서 공구경사각을 고려한 비절삭저항 예측 (Prediction of Specific Cutting Pressure in Face Milling Considering Tool Rake Angles)

  • 류시형;주종남
    • 한국정밀공학회지
    • /
    • 제14권2호
    • /
    • pp.169-177
    • /
    • 1997
  • In this study, investigated are the effects of tool rake angles and the change of cutting conditions on the specific cutting pressure in face milling. The cutting force in face milling is predicted from the double cutting edge model in3-dimensional cutting. Conventional specific cutting pressure model is modified by considering the variation of tool rake angles. Effectiveness of the modified cutting force model is verified by the experiments using special face milling cutters with different cutter pockets and various rake angles. From the comparison of the presented model and the specific cutting pressure, it is shown that the axial force can be predicted by the tangential force, radial force and geometric conditions. Also, the rela- tionship between specific cutting pressure and cutting conditions including feedrate, cutting velocity and depth of cut is studied.

  • PDF

2차원 절삭이론을 이용한 정면밀링 절삭력 예측 (Predicting Cutting Forces in Face Milling with the Orthogonal Machining Theory)

  • 김국원
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.150-157
    • /
    • 2002
  • This paper presents an effective cutting force model that enable us to predict the instantaneous cutting force in face milling from a knowledge of the work material properties and cutting conditions. The development of the model is based on the orthogonal machining theory with the effective rake angle which is defined in the plane containing the cutting velocity and chip flow vectors. Face milling testes are performed at different feeds and, a fairly good agreement is shown between the predicted cutting forces and test results.

Predicting cutting forces in face milling with the orthogonal machining theory

  • Kim Kug Wean
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.13-18
    • /
    • 2005
  • This paper presents an effective cutting force model that enables us to predict the instantaneous cutting force in face milling from knowledge of the work material properties and the cutting conditions. The development of the model is based on the orthogonal machining theory with the effective rake angle, which is defined in the plane containing the cutting velocity vector and the chip flow vector. Face milling tests are performed at different feeds and, a fairly good agreement is shown between the predicted cutting forces and the test results.

미소절삭에서의 절삭력 해석 (An Analysis of Cutting Force in Micromachining)

  • 김동식;강철희;곽윤근
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.72-80
    • /
    • 1995
  • Ultraprecision machining technology has been playing a rapidly increasing and important role in manufacturing. However, the physics of the micromachining process at very small depth of cut, which is typically 1 .mu. m or less is not well understool. Shear along the shear plane and friction at the rake face dominate in conventional machining range. But sliding along the flank face of the tool due to the elastic recovery of the workpiece material and the effects of plowing due to the large effective negative rake angle resultant from the tool edge radius may become important in micromachining range. This paper suggests an orthogonal cutting model considering the cutting edge radius and then quantifies the effect of plowing due to the large effective negative rake angle.

  • PDF

티타늄 합금의 밀링가공에서 평 엔드밀의 헬릭스각과 경사각의 영향 분석 (Analysis on the Effects of Tool Rake Angle and Helix Angle of a Flat End-mill in the Milling of Ti-alloy)

  • 예동희;구준영;박영군;김정석
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.508-513
    • /
    • 2015
  • In this study, the effect of the helix angle and rake angle of a flat end-mill in the milling of titanium alloy was investigated. Tool shape parameters such as helix angle and rake angle affect the cutting force, cutting zone temperature, vibration, and chip flow mechanism, which in turn determine tool life, surface integrity, and dimensional accuracy of the milling process. To investigate the effect of the helix and rake angles, a certain range of parameters was selected, and three-dimensional tool models were generated for finite element analysis (FEA) for each case. The cutting force and pressure on the tool flank face and rake face were investigated by FEA. Further, several tool models were proposed for machining tests. The cutting force characteristics were investigated by the machining tests.

난삭재인 SKD11의 정면밀링 가공시 절삭특성에 관한 연구 (A Study on the Cutting Characteristics in the Machining of SKD11 by Face Milling)

  • 김형석;문상돈;김태영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.73-78
    • /
    • 1994
  • Wear and fracture mode of ceramic tool for hardened SKD11 steel was investigated by face milling in this study. The cutting force and Acoustic Emission(AE) signal were utilized to detect the wear and fracture of ceramic tool. The following conclusions were obtained : (1) The wear and fracture modes of ceramic tool are characterized by three types: \circled1wear which has normal wear and notch wear, \circled2 wear caused by scooping on the rake face, \circled3 large fracture caused by thermal crack in the rake face. (2) The wear behaviour of ceramic tool can be detected by the increase of mean cutting force and the variation of the AE RMS voltage. (3) The catastrophic fracture of ceramic tool can be detected by the cutting force(Fz-component). (4) As the hardness of work material increased, Acoustic Emission RMS value and mean cutting force(Fz) increased linearly, but the tool life decreased.

  • PDF

절삭공구의 피복층이 공구마멸에 미치는 영향에 대한 연구 (Study on Effects of Coatings on Cutting Tool Wear)

  • 손태영;양민양
    • Tribology and Lubricants
    • /
    • 제6권1호
    • /
    • pp.82-88
    • /
    • 1990
  • 마찰학적인 관점에서 피복초경공구의 피복층이 공구마멸에 미치는 영향을 조사하기 위하여 공구표면의 피복층을 선택적으로 제거한 후 마멸시험, 급속정지 실험 및 절삭력 측정 실험을 수행하였다. 실험 결과 피복층은 공구와 피삭재 사이의 점착성을 낮추어 점착마멸을 억제시키는 것으로 나타났으며, 마찰저항을 감소시켜 절삭력을 낮추는 것으로 관찰되었다. 또한 경사면상의 피복층이 플랭크 마멸의 성장을 저지하는 효과가 있는 것으로 나타났으며, 피삭재가 탄소강인 경우 경계마멸까지 고려할 때 다중피복공구가 가장 바람직한 것으로 관찰되었다.