• Title/Summary/Keyword: Rainwater storage

Search Result 86, Processing Time 0.03 seconds

Study on the Changes in Evapotranspiration according to the Decentralized Rainwater Management (분산식 빗물관리시설 적용에 따른 증발산 변화 연구)

  • Han, Young-Hae;Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.12 no.5
    • /
    • pp.3-10
    • /
    • 2012
  • In this study, the influence of decentralized rainwater management over the changes in evapotranspiration was analyzed. The analysis method was obtained by establishing the decentralized rainwater management plan according to different scenarios, and subsequently examined evapotranspiration in the plan. Scenario 1 refers to the analysis of the existing situation, in which was 100% of a parking lot is asphalt pavement. In Scenario 2, the pavement of the parking surface in the parking lot is replaced with lawn blocks. In Scenario 3, some asphalt pavement was removed to establish a flower-bed type infiltration system to allow rainwater to permeate. In Scenario 4, infiltration and storage of rain water would be achieved by transforming the parking surface into lawn blocks, keeping the asphalt for the parking road while establishing a vegetation strip. The amount of evapotranspiration of the target site was analyzed with a water budget analysis program (CAT) using the 2001 meteorological data for each scenario According to the analysis values of S2 and S3, it was found that evapotranspiration is critically affected by the amount of area replaced with pervious area in the total target site. An energy equivalent to 680kWh is required for 1 ton of water to evaporate. Hence, it can be seen that the active inducement of evapotranspiration in urban area makes a positive contribution not only to heat island mitigation, but also to the small-scale water circulation process in a city.

Operation Strategy for a Multi-functional Storage Facility (하수저류시설 운영 전략 연구)

  • Yun, So-Young;Lim, Yoon-Dae;Oh, Jei-ll
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.959-970
    • /
    • 2011
  • The frequent occurrence of sewer flooding and the intermittent discharge of non-point pollutions into the receiving water body are emerging issues recently due to the climate change and urbanization. These problems might be solved by introducing a multifunctional storage facility. Unlike a single-purpose storage facility, a multi-purpose storage facility should be operated at an instant to meet for flood prevention, reduction of non-point pollution and/or rainwater reuse. Considering various operational combinations it is suggested that prevention of sewer flooding coupled with reduction of non-point pollution is the most effective operational strategy for a multi-functional storage facility.

Feasibility Study on Installing a Multi-functional Storage Facility (하수저류시설 타당성 분석 연구)

  • Ryu, Jae-Na;Oh, Jei-ll;Lee, Kyoung-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.935-947
    • /
    • 2011
  • In the era of climate change, the feasibility of a 'multi-functional storage facility' was evaluated in terms of various key performance indices such as flooding prevention effects, urban pollution reduction effects, and rainwater harvesting effects. As a result, the Korea Ministry of Environment introduced a new concept of 'multi-functional storage facility' for sewer flooding prevention and urban non-point pollution reduction. Prior to introducing these infrastructure (a large underground storage facility), the more details were needed to be examined carefully in all of technical aspects of construction and management. It was also well known that the validity of installation of 'multi-functional storage facility' was sometimes weakened because of a low B/C ratio.

A Study on the Control and Level Measurement for a Rainwater Tank (우수 저류조 수위측정 및 제어에 대한 연구)

  • Kim, Kee-Hwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.2 no.4
    • /
    • pp.55-59
    • /
    • 2016
  • In this paper, we propose a system for monitoring and controlling the level of the rainwater tank by installing an underground storage tank as one of ways to increase the utilization rate to solve the water shortage and imbalance. For this purpose, a microprocessor of ATMEL's Atmega 128 is used for the control module, and the sensor capable of measuring the water level uses a float type level sensor which is a kind of tactile sensor. In particular, the level sensor outputs the output in a industry standard dimension, so that the compatibility is improved so as to replace the existing sensor.

Urban Waterway System and Construction Method for Runoff Reduction (유출저감을 위한 도시형 수로 시스템 및 시공방법)

  • Oh, Yungtak;Han, Seungwan
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.25-33
    • /
    • 2021
  • This technology is to let rainwater flow into a waterway that is located side gutter of a street with blocking garbage including cigarette butts at the same time. The first waterway is located beside the sidewalk and it enhances the water circulation in a city. This waterway is filled with aggregates and filter media, which removes fine dust that is washed out of the street and let water flow down to the earth. The second waterway is located beside the street and it retains rainwater temporarily with decreasing its flow speed. The second waterway shall reduce flooding damages by avoiding bottleneck situation in the street inlets and storm water pipelines which is the main causation of flooding in a city.

A Discussion on Determination of Suitable Size of Rain Tank Connected to Building Roof in Suwon District (건축물 지붕과 연결된 빗물저류조의 적정 규모 결정에 관한 고찰: 수원지역을 중심으로)

  • Noh, Huiseong;Ahn, Taejin
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.161-169
    • /
    • 2022
  • In this study to estimate suitable size of rain tank in Suwon district, monthly rainfall, daily rainfall duration curve and daily rainy days have been analyzed. Annual rainwater consumption and daily average amount of storage with respect to size of rain tank have been calculated by applying continuity equations that take account of daily rainfall, daily consumptive use, storage of rain tank, It has been shown that above 50 mm of rainfall in the ordinance related to reclamation water may be inappropriate regulation if annual amount of rainfall captured, efficiency of utilized rainwater, number of days for utilized rain tank, daily average amount of storage and daily consumptive use have been considered. Thus, it has been shown that suitable size of rain tank should be determined considering reasonable daily consumptive use with respect to district, constructed cost of rain tank and benefit of rain tank constructed.

Design and Operation of the Rainwater-Greywater Hybrid System : SNU No. 39 Building (빗물-저농도 오수 하이브리드 시스템의 설계 및 운전 평가 : 서울대 39동)

  • Shim, In-tae;Park, Hyun-ju;Kim, Tschung-il;Jung, Sung-un;Han, Moo-young;Namkung, Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.676-682
    • /
    • 2016
  • In this study, rainwater-greywater hybrid system was installed and operated for 1 year in order to evaluate its water quantity, water quality, and economic efficiency in building no. 39. This system was expected to overcome each disadvantages of and maximize each advantages. Low-greywater that was washed up from shower room was treated by MBR (Membrane Bioreactor) and ozone oxidation. Rainwater that was collected from the rooftop was stored in a reservoir, and then transferred to the storage tank that was mixed with treated greywater. After 1 year operating in building no. 39, rainwater and greywater was used to supply $2,599m^3$ of toilet flushing water. In terms of water quality, rainwater was satisfied far the greywater reuse standards except for E.coli. Moreover, low greywater quality was acceptable except for E. coli, BOD, SS, and turbidity. In addition, economic analysis was obtained from benefit-cost ratio (B/C) with 1.11. It implies that the feasibility of the project was reasonable. Furthermore, various research and policy to improve the economic efficiency of water recycling facilities is required to expand the use of water recycling facilities.

The effect of Temperature Reduction of Green roof for building energy-saving using Rainwater Storage Tank (건물 에너지 절약을 위한 저류 옥상 녹화의 온도 저감 효과)

  • Yun, Seok-hwan;Kim, Eun-sub;Piao, Zheng-gang;Kim, Sang-hyuck;Kim, Na-yeon;Hwang, Hye-mee;Je, Sang-woo;Kang, Han-min;Ham, Eun-kyung;Lee, Dong-kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.4
    • /
    • pp.51-59
    • /
    • 2023
  • Despite countries' efforts to reduce carbon emissions, carbon emissions have increased in recent decades along with energy use, of which building energy uses account for a large proportion. Energy savings are essential as a strategy to reduce carbon emissions in existing buildings. The field experiment on the roof of a building located in Seoul was designed to measure the temperature reduction effect of green roof with rainwater storage tank to reduce cooling energy consumption in summer. The results showed that the mean mean surface temperature under the green roof was 14.77 degrees lower than that of the non-green roof from 13:00 P.M. to 15:00 P.M., which would have a great effect on reducing cooling energy. From 01:00 A.M. to 03:00 A.M., the effect was 3.36 degrees, showing that tropical nights could be improved. The temperature reduction effect due to the rainwater storage system increased by 1.45 degrees during the day and decreased by 0.63 degrees at night. The storage system can be strategically utilized to reduce carbon emissions during the week when cooling energy increases significantly.

An experimental study on increased pressure in Shinwol rainwater storage and drainage system by undular bore (불규칙 단파에 의한 신월 빗물저류배수시설 내 압력상승에 관한 실험 연구)

  • Oh, Jun Oh;Park, Jae Hyeon;Jun, Sang Mi
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.303-312
    • /
    • 2020
  • An underground deep tunnel system is a facility in form of a reverse siphon for an under flood defense structure. In this study, the 'Shinwol rainwater storage and drainage system', which is under construction for the first time in South Korea, in order to confirm the effects of undular bore and pressurized air on the hydraulic stability of the facility in various flood scenarios a hydraulic model experiment was performed. As a result of this study, it was analyzed that the undular bore generated downstream pushed the pressurized air collected in the facility while moving upstream, and the pressure inside the pipe increased at this time. It was analyzed that the pressure during the passage of the undular bore was greater than the sum of the static pressure and dynamic pressure at the time and overflow occurred when the cross-sectional size of the pressurized air was more than 40% of the cross sectional area of the tunnel. It is determined that this is correlated with the volume of pressurized air collected in the facility, and it is determined that it is necessary to study the relationship between velocity of undular bore and the volume of pressurized air in the future.