• Title/Summary/Keyword: Rainforest

Search Result 19, Processing Time 0.02 seconds

Reflection Symmetry of PALSAR Quad-Pol Imagery in the Amazon Rainforest (아마존 지역 PALSAR 다중편파 자료의 반사대칭성 특성)

  • Kim, Jae-Hun;Yoon, Sun Yong;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.969-979
    • /
    • 2018
  • This paper presents reflection symmetry of polarimetric SAR over the Amazon rainforest in terms of correlation coefficients between the pairs of HH- and HV-pol and VV- and VH-pol data by ALOS PALSAR. The reflection symmetry is defined as a non-zero correlation between HH- and HV-pol and VV- and VH-pol over natural distributed targets, and is a fundamental assumption for cross-talk calibration coefficient computation and for three-component decomposition for polarimetric SAR data. The Amazon rainforest is especially one of the common global reference sites for the reflection symmetry. The correlation coefficients for the pairs of reflection symmetry obtained in this study range from 0.018 to 0.097. The results imply that there exists a non-negligible dependency between co-pol and cross-pol in the distributed natural targets, and consequently the non-zero correlation must be considered as a potential contribution to errors of spaceborne SAR polarimetry to some extent.

Behaviour of Vegetation Health as a Response to Climate and Soil Dynamics between 2000 and 2015 in Different Ecological Zones of Rivers State, Nigeria

  • Eludoyin, Olatunde Sunday;Aladesoun, Olawale Oluwamuyiwa
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.4
    • /
    • pp.280-291
    • /
    • 2021
  • The study examined the influence of climate and soil dynamics on vegetation health across the ecological zones in Rivers State, Nigeria. MODIS imagery was used to assess the vegetation health through NDVI and point grid pattern of meteorological data for total precipitation (TP), air temperature (AT), soil moisture (SM) and soil temperature (ST) of 2000, 2003, 2006, 2009, 2012 and 2015 were used for the study. Descriptive and inferential statistics were used for data analysis. Findings showed that NDVI ranged between 0.420 and 0.612 in the freshwater swamp (FWS) while between 0.465 and 0.611 in the rainforest and the NDVI in the mangrove was generally low. The highest mean AT was experienced in the mangrove ecological zone and the least was experienced in the rainforest. The mean SM was generally highest in the rainforest with highest value in 2000 (774.44 m3/m3). The ST was highest in the mangrove and the least was experienced in the rainforest while the TP was highest in the mangrove. NDVI correlated significantly with SM (r=0.720; p<0.05) and ST (r= -0.493; p<0.05). NDVI, SM, TP and ST significantly varied among the ecological zones. Regression analysis showed that vegetation health was significantly related to the combination of soil temperature and soil moisture (R2=0.641; p=0.000). Thus, monitoring the factors that affect vegetation health in a changing climate and soil environments is highly required.

Data Mining-Aided Automatic Landslide Detection Using Airborne Laser Scanning Data in Densely Forested Tropical Areas

  • Mezaal, Mustafa Ridha;Pradhan, Biswajeet
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.45-74
    • /
    • 2018
  • Landslide is a natural hazard that threats lives and properties in many areas around the world. Landslides are difficult to recognize, particularly in rainforest regions. Thus, an accurate, detailed, and updated inventory map is required for landslide susceptibility, hazard, and risk analyses. The inconsistency in the results obtained using different features selection techniques in the literature has highlighted the importance of evaluating these techniques. Thus, in this study, six techniques of features selection were evaluated. Very-high-resolution LiDAR point clouds and orthophotos were acquired simultaneously in a rainforest area of Cameron Highlands, Malaysia by airborne laser scanning (LiDAR). A fuzzy-based segmentation parameter (FbSP optimizer) was used to optimize the segmentation parameters. Training samples were evaluated using a stratified random sampling method and set to 70% training samples. Two machine-learning algorithms, namely, Support Vector Machine (SVM) and Random Forest (RF), were used to evaluate the performance of each features selection algorithm. The overall accuracies of the SVM and RF models revealed that three of the six algorithms exhibited higher ranks in landslide detection. Results indicated that the classification accuracies of the RF classifier were higher than the SVM classifier using either all features or only the optimal features. The proposed techniques performed well in detecting the landslides in a rainforest area of Malaysia, and these techniques can be easily extended to similar regions.

Lignin signatures of vegetation and soils in tropical environments

  • Belanger, E.;Lucotte, M.;Gregoire, B.;Moingt, M.;Paquet, S.;Davidson, R.;Mertens, F.;Passos, C.J.S.;Romana, C.
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.247-262
    • /
    • 2015
  • The few lignin biomarker studies conducted in tropical environments are hampered by having to use references signatures established for plants and soils characteristic of the temperate zone. This study presents a lignin biomarker analysis (vanillyls (V), p-hydroxyls (P), syringyls (S), cinnamyls (C)) of the dominant plant species and soil horizons as well as an analysis of the interrelated terrigenous organic matter (TOM) dynamics between vegetation and soil of the $Tapaj{\acute{o}}s$ river region, an active colonization front in the Brazilian Amazon. We collected and analyzed samples from 17 fresh dominant plant species and 48 soil cores at three depths (0-5 cm, 20-25 cm, 50-55 cm) from primary rainforest, fallow forest, subsistence agriculture fields and pastures. Lignin signatures in tropical plants clearly distinguish from temperate ones with high ratios of Acid/aldehyde of vanillyls ((Ad/Al)v) and P/V+S. Contrary to temperate environments, similarly high ratios in tropical soils are not related to TOM degradation along with pedogenesis but to direct influence of plants growing on them. Lignin signatures of both plants and soils of primary rainforest and fallow forest clearly distinguish from those of non-forested areas, i.e., agriculture fields and pastures. Attalea speciosa Palm trees, an invasive species in all perturbed landscapes of the Amazon, exhibit lignin signatures clearly distinct from other dominant plant species. The study of lignin signatures in tropical areas thus represents a powerful tool to evaluate the impact of primary rainforest clearing on TOM dynamics in tropical areas.

Gap characteristics and natural regeneration in Mt. Makiling rainforest, the Philippines

  • Kim, Hyun-Ji;Kim, Tae-Geun;Kim, Eun-Hee;Castillo, Manuel L.;Cho, Do-Soon
    • Journal of Ecology and Environment
    • /
    • v.34 no.2
    • /
    • pp.157-165
    • /
    • 2011
  • This study was conducted to determine the characteristics of gaps and natural regeneration of trees on Mt. Makiling, the Philippines. Canopy gaps in or around two 1-ha permanent plots and on 3-km line transects were investigated. Most of the gaps studied were formed or affected by Typhoon Milenyo, which hit the study site in September 2006. The most frequent mode of gap maker death was snap-off, whereas uprooting was relatively less important. The most frequent gap maker was balobo (Diplodiscus paniculatus) followed by magabuyo (Celtis luzonica) and katmon (Dillenia philippinensis). In contrast, the most frequent gap filler was magabuyo (C. luzonica). At the sapling layer, the most important species was magabuyo (C. luzonica), but there was a high proportion of lianas and palms. Most of the gaps had leaf area index (LAI) values between 3 and 5. A clear trend of a decrease in gap size and an increase in LAI was observed for 2 years from 2007 to 2009. New seedlings emerged very abundantly during the same time period. The rapid changes in the gaps were partially due to the excellent capability of tropical trees to resprout after the crown or stem was damaged by the typhoon. This study on gap dynamics may contribute to a better understanding of the natural regeneration process of trees in tropical rainforests.

Natural Regeneration Potential of the Soil Seed Bank of Land Use Types in Ecosystems of Ogun River Watershed

  • Asinwa, Israel Olatunji;Olajuyigbe, Samuel Olalekan
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.3
    • /
    • pp.141-151
    • /
    • 2022
  • Soil seed banks as natural storage of plant seeds play an important role in the maintenance and regeneration of watershed. Natural regeneration potential of the soil seed bank of Land use types (LUTs) in Ogun River watershed (ORW) was investigated. ORW was stratified using proportionate sampling technique into Guinea Savannah (GS), Rainforest (RF) and Swamp Forest (SF) Ecological Zones (EZs). Three LUTs: Natural Forest (NF), Disturbed Forest (DF) and Farmland (FL) were purposively selected in GS: GSNF, GSDF, GSFL; RF: RFNF, RFDF, RFFL and SF: SFNF, SFDF, SFFL, respectively. Systematic line transects was used in the laying of the sample plots. Sample plots of 25 m×25 m were established in alternate positions. Ten 1 m×1 m quadrats were randomly laid for soil core sampling from previously randomly selected ten plots. The core samples (10) were pooled per plot in each LUT and placed in individual trays. Ten trays with sterilized soil were used as control. The trays were watered regularly and checked for seedlings emergence fortnightly for 18 months. The experimental design used was 3×3 factorial experiments. ANOVA, Diversity index (H') and Similarity index (SI) were used to analyze the data. There was significant difference in seedling emergence among ecological zones and land use types (p<0.05). A total of 4,400 seedlings emerged from the soil samples. All species were distributed among 32 families. FL in the RF had the highest number of germinated seeds (705±37.33 seedlings) followed by DF in the RF (701±49.6 seedlings). The lowest emergence was in NF of the SF (199±28.41 seedlings). DF in the RF had highest number of species (34) distributed among 22 families. Emergence from soil seed bank of NF in ORW was generally with more of tree species than herbs that were predominant in FL and DF.

Mapping Distribution of Dipterocarpus in East Kalimantan, Indonesia

  • Aoyagi, Kota;Tsuyuki, Satoshi;Phua, Mui-How;Teo, Stephen
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.3
    • /
    • pp.179-184
    • /
    • 2012
  • Dipterocarps (Dipterocarpaceae) is a dominant tree family of tropical rainforest in Southeast Asia. Dipterocarps have been exploited for its timber and disappearing fast in East Kalimantan. In this study, we predicted the distribution of dipterocarpus, one of the main dipterocarps genera, by evaluating its habitat suitability using logistic regression analysis with specimen collection points and environmental factors from GIS data. Current distribution of dipterocarpus was generated by combining the habitat suitability classes with an updated forest cover map. Rainfall, soil type, followed by elevation was the main factors that influence the distribution of dipterocarpus in East Kalimantan. Dipterocarpus can be found in a quarter of the current forest cover, which is highly suitable as habitat of Dipterocarpus.

Construction of a Remote Monitoring System in Smart Dust Environment

  • Park, Joonsuu;Park, KeeHyun
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.733-741
    • /
    • 2020
  • A smart dust monitoring system is useful for obtaining information on rough terrain that is difficult for humans to access. One of ways to deploy sensors to gather information in smart dust environment is to use an aircraft in the Amazon rainforest to scatter an enormous amount of small and cheap sensors (or smart dust devices), or to use an unmanned spacecraft to throw the sensors on the moon's surface. However, scattering an enormous amount of smart dust devices creates the difficulty of managing such devices as they can be scattered into inaccessible areas, and also causes problems such as bottlenecks, device failure, and high/low density of devices. Of the various problems that may occur in the smart dust environment, this paper is focused on solving the bottleneck problem. To address this, we propose and construct a three-layered hierarchical smart dust monitoring system that includes relay dust devices (RDDs). An RDD is a smart dust device with relatively higher computing/communicating power than a normal smart dust device. RDDs play a crucial role in reducing traffic load for the system. To validate the proposed system, we use climate data obtained from authorized portals to compare the system with other systems (i.e., non-hierarchical system and simple hierarchical system). Through this comparison, we determined that the transmission processing time is reduced by 49%-50% compared to other systems, and the maximum number of connectable devices can be increased by 16-32 times without compromising the system's operations.

Change Detection of the Tonle Sap Floodplain, Cambodia, using ALOS PALSAR Data

  • Trung, Nguyen Van;Choi, Jung-Hyun;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.287-295
    • /
    • 2010
  • Water level of the Tonle Sap is largely influenced by the Mekong River. During the wet season, the lacustrine landform and vegetated areas are covered with water. Change detection in this area provides information required for human activities and sustainable development around the Tonle Sap. In order to detect the changes in the Tonle Sap floodplain, fifteen ALOS-PALSAR L-band data acquired from January 2007 to January 2009 and examined in this study. Since L-band is able to penetrate into vegetation cover, it enables us to study the changes according to water level of floodplain developed in the rainforest. Four types of images were constructed and studied include 1) ratio images, 2) correlation coefficient images, 3) texture feature ratio images and 4) multi-color composite images. Change images (in each 46 day interval) extracted from the ratio images, coherence images and texture feature ratio images were formed for detecting land cover change. Two RGB images are also obtained by compositing three images acquired in the early, in the middle and at the end of the rainy season in 2007 and 2008. Combination of the methods results that the change images present the relationship between vegetation and water level, leaf fall forest as well as cultivation and harvest crop.

Assessing the Root Development and Biomass Allocation of Magnolia champaca under Various Mulching at Montane Rainforest Cameron Highlands, Pahang, Malaysia

  • Wahidullah Rahmani;Frahnaz Azizi;Mohamad, Azani Bin Alias
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.2
    • /
    • pp.96-104
    • /
    • 2023
  • The successful restoration program requires a comprehensive understanding of variables influencing seedling efficiency. Below-ground is hypothesized to have a major impact on seedling performance of species when planted in agriculture, and degraded areas with different types of mulching. This study investigated on Sg. Terla Forest Reserve in Cameron Highlands Pahang, Malaysia. In this study randomized complete block design (RCBD) was used. The excavation method was applied to study the root system development, above, and below ground biomass distributions under different types of mulching: coconut mulching (CM), oil palm mulching (OM), plastic mulching (PM) and control (CK). The root diameter, main root length, lateral root length, root coiling, and root direction toward to sun were recorded. The results in this study indicate that mulching had significant effect on root diameter, main root length, and root distributions among treatments while for lateral root length, root: shoot ratio, dry biomass distributions, and above and below ground biomass did not showed significant effect among treatments. The highest values for root diameter, lateral root length, main root length, root distributions, dry biomass distributions and above and below ground biomass were showed in CM treatments. However 75% of root coiling was observed in seedlings between treatments.