• 제목/요약/키워드: Rainfed lowland rice

검색결과 7건 처리시간 0.029초

Variation in root system developmental responses of irrigated and rainfed philippine rice varieties to water stressed environments

  • Cabral, Maria Corazon J.;Niones, Jonathan M.;Suralta, Roel R.;Yamauchi, Akira
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.230-230
    • /
    • 2017
  • About 200 rice varieties for irrigated and rainfed lowland ecosystems were released in the Philippines, which were bred for improving yield under favorable conditions. Root plasticity plays key roles in maintaining crop productivity under abiotic stressed conditions. We hypothesized that some of these varieties possess root plasticity traits in response to water stressed conditions. This study aimed to evaluate the root system development and dry matter production of 14 randomly selected rice varieties (6 irrigated lowland and 9 rainfed varieties) under progressive drought (PDR) and soil moisture fluctuations (SMF) stress conditions. Two experiments were done in rootbox and line source sprinkler systems (LSS). Each of the varieties was subjected to well-watered (WW), PDR and SMF conditions during vegetative stage in rootbox system while the same genotypes were subjected to different intensities of drought stress under LSS. Under rootbox system, PDR and SMF significantly reduced shoot dry matter production in all varieties relative to their WW controls. Among varieties, NSIC Rc238 (irrigated lowland) showed the least reduction in shoot dry weight (SDW) in both PDR (by 11.8%) and SMF (by 26.9%) conditions. Less reductions in SDW of NSICRc238 were partially attributed to the promotion of L-type lateral roots, thus increasing total lateral root length by 24.2% and 30.7% under PDR and SMF, respectively. In LSS, SDW of NSIC Rc238 under mild drought stress (16-21% soil moisture content (SMC) had 31.8% reduction relative to its WW control (${\geq}22%SMC$) and had lower sensitivity drought index. Compared with the IR64 susceptible check and NSIC Rc9 tolerant check, NSIC Rc238 had higher SDW by 90.8% and 38.6%, respectively. Furthermore, no rainfed lowland varieties included in the experiment performed well under different water stress treatments. The results implied that some other irrigated lowland rice varieties may also possess drought dehydration avoidance root plasticity traits under water-stressed growing environments.

  • PDF

On-Farm evaluation of the effects of the system of rice intensification (SRI) on rice growth and yield in rainfed lowland rice of southern Cambodia

  • LEE, Yun Ho;KOBAYASHI, Kazuhiko;SEO, Myung Chu
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.266-266
    • /
    • 2017
  • In recent years, adoption of the System of Rice Intensification (SRI) is spreading in most Asian countries, and more recently in Cambodia is one of the Asian countries with high adoptions of SRI. We conducted on-farm experiment to investigate the effects of SRI on rice growth and yield in the farmers' fields in rainfed region of southern Cambodia. The study was undertaken in rainfed lowland fields of Popel commune ($11^{\circ}$ 04' 67" N, $104^{\circ}$ 40' 79" E) of Tram Kak District in Takeo Province during the wet seasons in 2012, 2013, and 2015. A total of 32 on-farm experiments were conducted during the wet seasons for three years of 2012 (11 fields), 2013 (8 fields), and 2015 (13 fields). Across the three years of study, SRI produced significantly greater plant biomass and grain yield than Non-SRI. The yield increase was mostly ascribed for the increased number of grains per land area, which was due to the increased number of spikelets per panicle rather than the number of panicles per land area. With no significant difference between SRI and Non-SRI with respect to seedling age, the greater number of grains per panicle was accounted for by the reduced planting density and increased amount of manure application in SRI than Non-SRI fields. It was found that the greater manure application has increased soil nitrogen content in SRI and Non-SRI fields. While SRI did not increase the number of panicles per land area, it did increase the number of panicles per hill.

  • PDF

Root System Development of Rice in Different Soil Moisture Conditions in Uganda Field.

  • Hatanaka, Keisuke;Shin, Yabuta;Minoru, Yoshino;Miyamoto, Kisho;Jun-Ichi, Sakagami
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2019년도 추계학술대회
    • /
    • pp.21-21
    • /
    • 2019
  • Approximately 80% of rice field in Africa conducts in rainfed (Nishimaki 2017). The rice is damaged by water stress because fields like rainfed lowland repeat drying and humidity of soil because of impossible water control. Then water stress is one of the major limiting factors for decreasing rice yield. So, in initial growth stage, quick and efficient root development is useful way to avoid drought stress by getting water from deeper soil layer with roots elongation as the hypothesis. Daniel et al (2016) reported that NERICA1 and NERICA4 show different patterns of root plasticity for drought stress. NERICA1 has greater development of lateral root in shallow soil layer, while NERICA4 has greater development in deep root elongation to underground. This study was aimed to evaluate the effect of root development in initial growth stage on growing NERICA1 and NERICA4 under different soil moisture condition in rainfed lowland rice field. They were grown in same water condition until 35 days after sowing (35DAS), and after that each varieties were separated in dry and wet condition. The rice plants were grown until 60DAS. The results of soil moisture, the root extension angle, shoot dry weight and bleeding ratio showed that NERICA4 can mitigate dry stress from surface soil compered to NERICA1.

  • PDF

EARLY CROP ESTABLISHMENT OF RAINFED LOWLANG RICE BY SLIT SEEDING

  • Manaligod, H.T.;Pasuquin, E.M.;Lantin, R.M.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.977-986
    • /
    • 1996
  • The uncertainty of rains at the onset of wet season (WS) and the drought risk involved hinder growing more than one rainfed lwoland rice crop per year. Establishing transplanted rice well into the WS leaves insufficient moisture in the soil for subsequent crop. Rice establishment early in the season gives the farmer better opportunities to grow a crop after rice. An experiment was conducted startign in 1993 to evaluate dry seeding of rice through slit soil seeding. It is done utilizing the vertical metering slit seeder for conserving soil moisture coming from the first rains in the early WS to sustain germination and establishment of the seeding at least until the succeeding rains under therainfed lowland (RL) environment. The treatment consisted of slit-seeding the PSBRc 14 into the tilled and nontilled plots at 100kg/ha and at depths of <10 mm (shallow seeding) and 60-70m (deep seeding). The control treatment was broadcast seeded on tilled soil and harrow to cover the seeds The superior crop establishment observed in 1995 WS experiment on nontilled, slit-seeded plots confirmed the results observed in 1993 WS and 1994 WS experiments. Emergence in deep seeding was not significantly different from shallow seeding in nontilled plots giving an average yield of 2.1 t/ha in all slit-seeded plots. This offers an advantage of reduced energy in put in nontilled shallow seeding. However, heavy weed infestation has to be addressed at the early stage of rice in nontilled soil to get the full advantage from slit seeding. The consistently better crop establishment observed in slit seeding over that of broadcast seeding in the WS of 1993, 1994 and 1995 also demonstrates that the slit seeding technology can be adopted with confidence in the rainfed lowland field condition to reduce the risks involved in broadcast seeding.

  • PDF

캄보디아 남부 천수답지역의 벼 집약관리재배 시스템(SRI)에 대한 현장 연구 (On-Farm Study of the System of Rice Intensification (SRI) of Rainfed Lowland in Southern Cambodia)

  • 이윤호;서명철;조정일;조현숙;김준환;신평;백재경;상완규
    • 한국국제농업개발학회지
    • /
    • 제30권4호
    • /
    • pp.285-291
    • /
    • 2018
  • 1. 본 연구는 저지대 천수답지역인 캄보디아 남부 따게오주에서2012~2013년에 2년간 벼 집약재배관리 시스템(System of Rice Intensification: SRI)에 대한 현장 연구 결과이다. 2. 천수답 지역에서 2년간 SRI는 FP 보다 화학비료 사용 없이 쌀 수량이 증가 되었다. 캄보디아 천수답 농가의 SRI은 어린모로 조기 이앙과 넓은 재식 밀도로 인해 이삭수 확보와 함께 지형에 따른 물 보유 능력과 오랜 기간 유기물 사용으로 수량이 증가된 것으로 판단된다. 3. 쌀 수량에 미치는 영향으로 총 질소 흡수량과 단위면적당 총 영화수는 ($r^2=0.95$) 정의 상관관계를 보였으며, 천수답 지역에서 물 관리 방법은 어렵지만 유기물을 장기간 사용한 지역 농가의 쌀 생산은 증가 되었다. 4. 최근 국내에서 일부 지역에서 소식재배가 확대되고 있는데 SRI원리를 소식재배와 연계한다면 보다 좋은 재배방법이 될 것으로 기대된다.

An enhanced root system developmental responses under drought by inoculation of rhizobacteria (Streptomyces mutabilis) contributed to the improvement of dry matter production in rice

  • Suralta, Roel R.;Cruz, Jayvee A.;Cabral, Maria Corazon J.;Niones, Jonathan M.;Yamauchi, Akira
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.231-231
    • /
    • 2017
  • Drought limits rice production under upland condition. This study quantified the effect of rhizobacteria inoculation on rice root system developmental response to drought and its role in maintaining high soil water use, and dry matter production under drought using NSIC Rc192 (rainfed lowland rice variety). The source of inoculant was Streptomyces mutabilis, a recently isolated rhizobacteria containing plant growth promoting compounds such as ACC deaminase, indole-3-acetic acid and phosphatase (Cruz et al., 2014, 2015). In the first experiment, pre-germination inoculation of seeds with S. mutabilis significantly increased the shoot and root (radicle) length as well as root hair lengths, relative to the non-inoculated control. In the second experiment, rice plants inoculated with S. mutabilis and grown in rootbox with soil generally had greater total root length under drought regardless of the timing of inoculations, relative to the non-inoculated control. Consequently, improved root system development contributed to the increase in soil water uptake under drought and thus, dry matter production. Among inoculation treatments, one-time inoculation of S. mutabilis either at pre-germination or pre-drought stress at 14 days after sowing (DAS), had significantly greater shoot dry matter production than three-time inoculation at pre-germination, at thinning (3 DAS) and at pre-drought (14 DAS). This study demonstrated the effectiveness of rhizobacteria (S. mutabilis) containing growth promoting compounds for enhancing drought dehydration avoidance root traits and improving the growth of rice plants under drought condition.

  • PDF

Growth and yield responses of rice varieties to various soil water deficit conditions under different soil types

  • Kikuta, Mayumi;Samejima, Hiroaki;Magoti, Rahab;Kimani, John M.;Yamauchi, Akira;Makihara, Daigo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.322-322
    • /
    • 2017
  • To avoid drought stress under rainfed upland conditions, it is important for rice to efficiently utilize water at shallow soil layers supplied by rainfall, and access to water retained in deer soil layers. The root developmental characteristics of rice, which play important role in the adaptability to drought conditions, vary depending on the variety. Moreover, water availability for plant differs depending on the soil types that have different physical properties such as water holding capacity, permeability, capillary force, penetration resistance, etc. In this study, we evaluated growth and yield responses of rice varieties to various soil water deficit conditions under three different soil types. The experiment was conducted in a plastic greenhouse at the Kenya Agricultural and Livestock Research Organization-Mwea from October 2016 to January 2017. Two upland varieties (NERICA 1 and 4) and one lowland variety (Komboka) were grown in handmade PVC pots (15.2 cm diameter and 85.0 cm height) filled with three different types of soil collected from major rice-growing areas of the country, namely black cotton (BC), red clay (RC), and sandy clay (SC). Three watering methods, 1) supplying water only from the soil surface (W1), 2) supplying water only from the bottom of the pots (W2), and 3) supplying water both from the soil surface and the bottom of pots (W3), were imposed from 40 days after sowing to maturity. Soil water content (SWC) at 20, 40, and 60 cm depths was measured regularly. At the harvesting stage, aboveground and root samples were collected to determine total dry weight (TDW), grain yield, and root length at 0-20, 20-40, 40-60, and 60-80 cm soil layers. Irrespective of the watering methods, the greatest root development was obtained in RC, while that in BC was less than other two soils. In BC, the degree of yield reduction under W1 was less than that in RC and SC, which could be attributed to the higher water holding capacity of BC. In RC, the growth and yield reduction observed in all varieties under W1 was attributed to the severe drought stress. On the other hand, under W2, SWC at the shallow soil depth in RC was maintained because of its higher capillary force compared with BC and SC. As the result, growths and yields in RC were not suppressed under W2. In SC, deep root development was not promoted by W2 irrespective of the varieties, which resulted in significant yield losses. Under W1, the rice growth and yield in SC was decreased although shallow root development was enhanced, and the stomatal conductance was maintained higher than RC. It was suspected that W1 caused nutrients leaching in SC because of its higher permeability. Under rainfed conditions, growth and yield of rice can be strongly affected by soil types because dynamics of soil water conditions change according to soil physical properties.

  • PDF