• Title/Summary/Keyword: Rainfall-Runoff Relation

Search Result 51, Processing Time 0.021 seconds

Computing Probability Flood Runoff for Flood Forecasting & Warning System - Computing Probability Flood Runoff of Hwaong District - (홍수 예.경보 체계 개발을 위한 연구 - 화옹호 유역의 유역 확률홍수량 산정 -)

  • Kim, Sang-Ho;Kim, Han-Joong;Hong, Seong-Gu;Park, Chang-Eoun;Lee, Nam-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.23-31
    • /
    • 2007
  • The objective of the study is to prepare input data for FIA (Flood Inundation Analysis) & FDA (Flood Damage Assessment) through rainfall-runoff simulation by HEC-HMS model. For HwaOng watershed (235.6 $km^{2}$), HEC-HMS was calibrated using 6 storm events. Geospatial data processors, HEC-GeoHMS is used for HEC-HMS basin input data. The parameters of rainfall loss rate and unit hydrograph are optimized from the observed data. HEC-HMS was applied to simulate rainfall-runoff relation to frequency storm at the HwaOng watershed. The results will be used for mitigating and predicting the flood damage after river routing and inundation propagation analysis through various flood scenarios.

The Study on Development and Verification of Rainfall-Runoff Simulator for LID Technology Verification (LID 기술의 효율성 검증을 위한 강우-유출 모의장치 개발 및 검증실험에 관한 연구)

  • Jang, Young Su;Kim, Mi Eun;Baek, Jong Seok;Shin, Hyun Suk
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.6
    • /
    • pp.513-522
    • /
    • 2014
  • Climate change and urbanization have affected a increase of peak discharge and water pollution etc. In a view of these aspects, the LID(Low Impact Development) technology has been highlighted as one of adjustable control measures to mimic predevelopment hydrologic condition. Many LID technologies have developed, but there is a lack of studies with verification of LID technology efficiency. Therefore this study developed a rainfall-runoff simulator could be possible to verify LID technology efficiency. Using this simulator, this study has experimented the rainfall verification through the rainfall distribution experiment and the experiment to show the relation between inflow and effective rainfall in order to sprinkle the equal rainfall in each unit bed. As a result, the study defined the relation between allowable discharge range and RPM by nozzle types and verified the hydrologic cycle such as the relation between infiltration rate, surface runoff and subsurface runoff at pervious area and impervious area through the rainfall-runoff experiment.

SCS Curve Number and temporal Variation of Rainfall (강우의 시간분포를 고려한 CN값 산정)

  • Cho, Hong-Je;Lee, Tae-Young
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.183-193
    • /
    • 2003
  • A relation between the temporal variation of rainfall and direct runoff was characterized using temporal indexes of rainfall(1st, 2nd, 3rd, and 4th moment). Curve Number has a relation with 1st and 2nd moment for AMCIII condition when the rainfall duration is relative (10th quantile). Also peak runoff ratio(QP/Q) has a relation with 1st and End moment for AMCIII condition as well as 3rd and 4th moment for AMC I condition. Considering all durations of rainfall, alternatively, Curve Number has a relation with 1st and 2nd moment for AMCIIIcondition besides every moments for AMC I condition. But peak runoff ratio(QP/Q) has few relations excepting 3rd and 4th moment for AMC I condition. As a results, temporal indexes of rainfall are useful to determine curve numbers regarding the temporal variation of rainfall.

Energy Conservation for Runoff and Soil Erosion on the Hillslope (산지사면의 유출 및 토양침식에 대한 에너지 보존)

  • Shin, Seung-Sook;Park, Sang-Deog;Cho, Jae-Woong;Hong, Jong-Sun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.234-238
    • /
    • 2008
  • The energy conservation theory is introduced for investigating processes of runoff and soil erosion on the hillslope system changed vegetation condition by wildfire The rainfall energy, input energy consisted of kinetic and potential energy, is influenced by vegetation coverage and height. Output energy at the outlet of hillslope is decided as the kinetic energy of runoff and erosion soil, and mechanical work according to moving water and soil is influenced dominantly by the work rather than the kinetic energy. Relationship between output and input energy is possible to calculate the energy loss in the runoff and erosion process. The absolute value of the energy loss is controlled by the input energy size of rainfall because energy losses of runoff increase as many rainfall pass through the hillslope system. The energy coefficient which is dimensionless is defined as the ratio of input energy of rainfall to output energy of runoff water and erosion soil such as runoff coefficient. The energy coefficient and runoff coefficient showed the highest correlation coefficient with the vegetation coverage. Maximum energy coefficient is about 0.5 in the hillslope system. The energy theory for output energy of runoff and soil erosion is presented by the energy coefficient theory associated with vegetation factor. Also runoff and erosion soil resulting output energy have the relation of power function and the rates of these increase with rainfall.

  • PDF

A study on the rainfall runoff from paddy fields in the small watershed during Irrigation period (관개기관중 답유역에서의 강우유출량 추정에 관한 연구)

  • 김채수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.4
    • /
    • pp.99-108
    • /
    • 1982
  • This thesis aims to estimate the rainfall runoff from paddy field in a small watershed during irrigation period. When the data observed at the proposed site are not available, the Monthly Runoff Equation of Korean Rivers which was derived from data observed under the following assumptions is used to study the water balance. a. Monthly base flow was assumed as 10. 2mm even if these is no mouthly rainmfall. b. Monthly comsumption of rainfall was ranged from 100 to 2OOmm without relation to the rainfall depth. However, the small watershed which consists mainly of paddy fields encounters severe droughts and accordingly the baseflow is negligible. Under the circumstances the author has developed the following equation called "Flood Irrigation Method for Rainfall Runoff "taking account of the evapotranspiration, precipitation, seepage, less of transportation, etc. R= __ A 7000(1 +F) -5n(n+1)+ (n+1)(Pr-S-Et)] where: R: runoff (ha-m) A: catchment area (ha) F: coefficient of loss (o.o-0. 20) Pr: rainfall (mm) S: seepage Er: evapotranspiration (mm) To verify the above equation, the annual runoff ratio for 28 years was estimated using the Monthly Runoff Equation of Korean Rivers the Flood Irrigation Method and the Complex Hydrograph Method based on meteorological data observed in the Dae Eyeog project area, and comparison was made with data observed in the Han River basin. Consequently, the auther has concluded that the Flood Irrigation Method is more consi- stent with the Complex Hydrograph Method and data observed than the Monthly Runoff Equation of Korean Rivers.

  • PDF

Comparison and analysis of peak flow by Areal Reduction Factor (면적감소계수에 따른 첨두유량의 비교연구)

  • Baek, Hyo-Sun;Lee, De-Young;Kang, Young-Buk;Choi, Han-Kuy
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1798-1802
    • /
    • 2007
  • The practice of business estimate flood discharge by rainfall-flow relation that is easy collection of observation data. The important factor is rainfall, coefficient of runoff, and drainage area for analysis of runoff-flow relation.The practice of business usually use probability rainfall that use a weighted average value after each observation post estimate probability of non-same time. It has more error than same time probability rainfall, and it can excess of estimation because it can't consider space distribution of rainfall.The study of result showed similar aspect with existing ARF but width of coefficient become smaller. And the comparison of peak flow did not different what used by ARF and same time probability rainfall(A group). But non-same time probability rainfall is bigger 25% more than another(B group). Between A group and B group of the difference increased with the lapse of time.

  • PDF

Comparison and analysis of peak flow by Areal Reduction Factor (면적감소계수에 따른 첨두유량의 비교 분석)

  • Lee, Dae-Young;Choi, Han-Kuy
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.95-102
    • /
    • 2007
  • The practice of business estimate flood discharge by rainfall-flow relation that is easy collection of observation data. The important factor is rainfall, coefficient of runoff, and drainage area for analysis of runoff-flow relation. The practice of business usually use probability rainfall that use a weighted average value after each observation post estimate probability of non-same time. It has more error than same time probability rainfall, and it can excess of estimation because it can't consider space distribution of rainfall. The study of result showed similar aspect with existing ARF but width of coefficient become smaller. And the comparison of peak flow did not different what used by ARF and same time probability rainfall(A group). But non-same time probability rainfall is bigger 25% more than another(B group). Between A group and B group of the difference increased with the lapse of time.

  • PDF

Flood Simulation with the Variation of Runoff Coefficient in Tank Model (탱크모형의 流出孔 乘數 변화를 고려한 홍수모의)

  • Lee, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.1
    • /
    • pp.3-12
    • /
    • 1998
  • Rainfall intensity under storms affects peak discharge or its time of occurrence in watershed runoff. Thus, it is reasonable to reflect the effect on the parameters of rainfall-runoff models or the governing equations of the models. This paper relates the change of the runoff coefficient of the first tank in tank model to rainfall intensity under storms. The standard four tanks have made the basic structure of the flood event model. and its modifications are as follows: it has two equal runoff coefficients in the first tank: the runoffs from first and second tanks produce delayed response through a simple delaying parameter. Applying the event simulation model to flood data from Naerinchon. runoff coefficients were estimated and their relation to rainfall intensity was analyzed. The results showed the Weak relation of the two factors. The trend of the two was fitted with the equation a1=kI$. where a1is the runoff coefficient of the first tank: I is rainfall intensity; k and m are fitting coefficients. In the verification. the model used moving averages for the calculation of I(t). If the value I(t) gave more greater value of a1(t) than that of previous time(t-1). the flood simulation was performed again from the beginning with the updated greater value of a1. The reflection of rainfall intensity on the runoff coefficient showed far better results than that of a fixed parameter.

  • PDF

Evapotranspiration and Water Balance in the Basin of Nakdong River (낙동강유역의 증발산량과 물수지)

  • 조희구;이태영
    • Water for future
    • /
    • v.8 no.2
    • /
    • pp.81-92
    • /
    • 1975
  • Calculation of the monthly water balance for Nakdong River basin for the period from 1958 to 1968 is made by determining three components independently: precipitation, runoff and evapotranspiration. The areal precipitation is computed by the Thiessen method using the records of nine meteorological stations in the basin, and the runoff is the flow gauged at Jindong which is located on the most downstream. For the computation of evapotranspiration, the Morton method is adopted because this method is relatively fit best in the calculation of water balance among the Morton, Penman and Thornthwaite methods. The values of Morton evapotransp iration are corrected by the factor of 0.82 in the basin in order to bring the error to zero. The areal evapotranspiration is the arithmetic mean of the Morton estimates at the stations. Mean water balance components in the Nakdong river basin are 1117.0mm, 600.6mm and 516.4m for precipitation, runoff and evapotranspiration respectively. Accordingly, the mean runoff ratio comes out to be 0.54. The smallest values of runoff coefficient are due for Daegu area, while the largest ones are for the southwest of the basin with the higher rainfall and high elevations there. The amount of runoff obtained by both Thornthwaite and Budyko methods for water balance computations indicate 59 and 60 per cent of actual values which are lower than the expected. An attempt is made to find the best reliable rainfall-runoff relation among the four methods proposed by Schreiber, 01'dekop, Budyko and Sellers. The modified equation of Schreiber type for annual runoff coefficient could be obtained with the smallest mean error of 11 per cent.

  • PDF

The Sensitivity Analysis of Parameters of Urban Runoff Models due to Variations of Basin Characteristics (II) - Model Calibration and Application - (유역특성 변화에 따른 도시유출모형의 매개변수 민감도분석(II) -모형의 검정 및 적용-)

  • Seo, Gyu-U;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.253-267
    • /
    • 1998
  • In this study, ILLUDAS and SWMM were applied for Dongsucheon basin, Incheon and Test basin, Cheongju. The main parameters (II, IA, IS, SI, SR, SS) which are included in those of each model depending on runoff results were determined, and sensitivity ratios were estimated in order to evaluate and compare the characteristics of each modEL. Total runoff ratio for almost parameters turned out to have a linear relation to the rainfall durations and the scale of basin area but have nothing to do with rainfall distributions. Sensitivity ratios turned out to have a linear relation for the infiltration and soil parameters of ILLUDAS as well as all parameters of SWMM. ronoff sensitivity ratios for almost parameters were smaller than 1.0 because the impacts of total runoff were bigger than those of peak runoff. And runoff sensitivity ratio was equal to 1.0 for the roughness coefficient of SWMM. Total runoff ratio, peak runoff ratio and runoff sensitivity ratio for the selected parameters of those models were presented asthe tables and figures according to the scale of basin area, rainfall durations such as 60, 120, and 180 minutes and Huff's 4th quartiles rainfall distributions. Keywords : ILLUDAS, SWMM, parameter, sensitivity analysis, sensitivity ratio.

  • PDF