• Title/Summary/Keyword: Rainfall runoff reduction

Search Result 184, Processing Time 0.024 seconds

Comparison and analysis of peak flow by Areal Reduction Factor (면적감소계수에 따른 첨두유량의 비교 분석)

  • Lee, Dae-Young;Choi, Han-Kuy
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.95-102
    • /
    • 2007
  • The practice of business estimate flood discharge by rainfall-flow relation that is easy collection of observation data. The important factor is rainfall, coefficient of runoff, and drainage area for analysis of runoff-flow relation. The practice of business usually use probability rainfall that use a weighted average value after each observation post estimate probability of non-same time. It has more error than same time probability rainfall, and it can excess of estimation because it can't consider space distribution of rainfall. The study of result showed similar aspect with existing ARF but width of coefficient become smaller. And the comparison of peak flow did not different what used by ARF and same time probability rainfall(A group). But non-same time probability rainfall is bigger 25% more than another(B group). Between A group and B group of the difference increased with the lapse of time.

  • PDF

Analysis of the Reduction Effect on NPS Pollution Loads by Surface Cover Application (지표피복재 적용을 통한 비점오염원 저감효과 분석)

  • Shin, Min-Hwan;Won, Chul-Hee;Park, Woon-Ji;Choi, Young-Hun;Jang, Jeong-Ryeol;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.4
    • /
    • pp.29-37
    • /
    • 2011
  • Effect of rice straw mat and wood shaves on the reduction of runoff and nonpoint source (NPS) pollution loads from field plots were experimentally studied. Three runoff plots of $5{\times}22$ m in size and 3 % in slope were prepared on a loamy sand field. Each plot was equipped with a flume to measure runoff and collect water samples. Experimental treatments of surface cover were bare, wood shaves (1,000 kg/ha) and rice straw mat cover (3,000 kg/ha). Under radish was cultivation. During the growing season of the radish, three rainfall-runoff events were monitored. Effect of wood shaves and straw mat cover on runoff reduction was 4~30 % and 33~75 % respectively compared to control. The effect on NPS pollution reduction was 36.8 and 64.3 % in BOD, 41.1 and 80.8 % in SS, 34.0 and 56.1 % in TP and 28.0 and 56.6 % in TN respectively. It was analyzed that the reduction of runoff and NPS pollution were mainly contributed by the decrease of rainfall energy impact and flow velocity and the increase of infiltration due to the surface cover materials. Rice straw mat showed very stable soil cover while large portion of wood shaves were lost during heavy storm events. It was concluded that straw mat was an efficient cover material to reduce NPS pollution from upland fields.

Factors affecting the infiltration rate and removal of suspended solids in gravel-filled stormwater management structures

  • Guerra, Heidi B.;Yuan, Qingke;Kim, Youngchul
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Apparent changes in the natural hydrologic cycle causing more frequent floods in urban areas and surface water quality impairment have led stormwater management solutions towards the use of green and sustainable practices that aims to replicate pre-urbanization hydrology. Among the widely documented applications are infiltration techniques that temporarily store rainfall runoff while promoting evapotranspiration, groundwater recharge through infiltration, and diffuse pollutant reduction. In this study, a laboratory-scale infiltration device was built to be able to observe and determine the factors affecting flow variations and corresponding solids removal through a series of experiments employing semi-synthetic stormwater runoff. Results reveal that runoff and solids reduction is greatly influenced by the infiltration capability of the underlying soil which is also affected by rainfall intensity and the available depth for water storage. For gravel-filled structures, a depth of at least 1 m and subsoil infiltration rates of not more than 200 mm/h are suggested for optimum volume reduction and pollutant removal. Moreover, it was found that the length of the structure is more critical than the depth for applications in low infiltration soils. These findings provide a contribution to existing guidelines and current understanding in design and applicability of infiltration systems.

Performance Evaluation of the Runoff Reduction with Permeable Pavements using the SWMM Model (SWMM 분석을 통한 투수성 포장의 유출 저감 특성 평가)

  • Lin, Wuguang;Ryu, SungWoo;Park, Dae Geun;Lee, Jaehoon;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.11-18
    • /
    • 2015
  • PURPOSES: This study aims to evaluate the runoff reduction with permeable pavements using the SWMM analysis. METHODS: In this study, simulations were carried out using two different models, simple and complex, to evaluate the runoff reduction when an impermeable pavement is replaced with a permeable pavement. In the simple model, the target area for the analysis was grouped into four areas by the land use characteristics, using the statistical database. In the complex model, simulation was performed based on the data on the sewer and road network configuration of Yongsan-Gu Bogwang-Dong in Seoul, using the ArcGIS software. A scenario was created to investigate the hydro-performance of the permeable pavement based on the return period, runoff coefficient, and the area of permeable pavement that could be laid within one hour after rainfall. RESULTS : The simple modeling analysis results showed that, when an impervious pavement is replaced with a permeable pavement, the peak discharge reduced from $16.7m^3/s$ to $10.4m^3/s$. This represents a reduction of approximately 37.6%. The peak discharge from the whole basin showed a reduction of approximately 11.0%, and the quantity decreased from $52.9m^3/s$ to $47.2m^3/s$. The total flowoff reduced from $43,261m^3$ to $38,551m^3$, i.e., by approximately 10.9%. In the complex model, performed using the ArcGIS interpretation with fewer permeable pavements applicable, the return period and the runoff coefficient increased, and the total flowoff and peak discharge also increased. When the return period was set to 20 years, and a runoff coefficient of 0.05 was applied to all the roads, the total outflow reduced by $5195.7m^3$, and the ratio reduced to 11.7%. When the return period was increased from 20 years to 30 and 100 years, the total outflow reduction decreased from 11.7% to 8.0% and 5.1%, respectively. When a runoff coefficient of 0.5 was applied to all the roads under the return period of 20 years, the total outflow reduction was 10.8%; when the return period was increased to 30 and 100 years, the total outflow reduction decreased to 6.5% and 2.9%, respectively. However, unlike in the simple model, for all the cases in the complex model, the peak discharge reductions were less than 1%. CONCLUSIONS : Being one of the techniques for water circulation and runoff reduction, a high reduction for the small return period rainfall event of penetration was obtained by applying permeable pavements instead of impermeable pavement. With the SWMM analysis results, it was proved that changing to permeable pavement is one of the ways to effectively provide water circulation to various green infrastructure projects, and for stormwater management in urban watersheds.

HSPF and SWAT Modelling for Identifying Runoff Reduction Effect of Nonpoint Source Pollution by Rice Straw Mulching on Upland Crops (볏짚 피복에 의한 밭 비점오염원 유출저감효과 분석을 위한 HSPF와 SWAT 모델링)

  • Jung, Chung Gil;Ahn, So Ra;Kim, Seong Joon;Yang, Hee Jeong;Lee, Hyung Jin;Park, Geun Ae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.47-57
    • /
    • 2013
  • This study is to assess the reduction of non-point source pollution loads for rice straw mulching of upland crop cultivation at a watershed scale. For Byulmi-cheon watershed (1.21 $km^2$) located in the upstream of Gyeongan-cheon, the HSPF (Hydrological Simulation Program-Fortran) and SWAT (Soil and Water Assesment Tool), physically based distributed hydrological models were applied. Before evaluation, the model was calibrated and validated using 9 rainfall events. The Nash-Sutcliffe model efficiency (NSE) for streamflow using the HSPF was 0.62~0.76 and the determination coefficient ($R^2$) for water quality (sediment, total nitrogen T-N, and total phosphorus T-P) were 0.72, 0.62, and 0.63 respectively. The NSE for streamflow using the SWAT were 0.43~0.81 and the $R^2$ for water quality (sediment, T-N, and T-P) were 0.54, 0.87, and 0.64 respectively. From the field experiment of 16 rainfall events, the rice straw cover condition reduced surface runoff average 10.0 % compared to normal surface condition. By handling infiltration capacity (INFILT) in HSPF model, the value of 16.0 mm/hr was found to reduce about 10.0 % reduction of surface runoff. For this condition, the reduction effect of sediment, T-N, and T-P loads were 87.2, 28.5, and 85.1 % respectively. By handling soil hydraulic conductivity (SOL_K) in SWAT model, the value of 111.2 mm/hr was found to reduce about 10.0 point reduction of surface runoff. For this condition, the reduction effect of sediment, T-N, and T-P loads were 80.0, 83.2, and 78.7 % respectively. The rice straw surface covering was effective for removing surface runoff dependent loads such as sediment and T-P.

Effects of Rain Garden on Reduction of Subsurface Runoff and Peak Flow (레인가든이 지하유출 및 첨두유량 감소에 미치는 효과)

  • Kim, Changsoo;Sung, Kijune
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.5
    • /
    • pp.69-79
    • /
    • 2011
  • This study assessed the subsurface runoff and peak flow reduction in rain gardens. The results showed that the highest water retention was found in rain garden mesocosms in which Rhododendron lateritium and Zoysia japonica were planted, followed by mesocosms in which either R. lateritium or Z. japonica was planted, and the lowest water retention rate was found in non-vegetated control treatment mesocosms(${\alpha}$ < 0.05). Although higher rainfall intensity caused a decrease of peak flow reduction in both vegetated and non-vegetated treatments, peak flow reduction was the greatest in mesocosms with mixed plants. A rain garden can be an effective tool for environment-friendly stormwater management and improving ecological functions in urban areas. Depending on the purpose such as delaying runoff or increasing infiltration, various plant types should be considered for rain garden designing.

Characteristics of Runoff Load from Nonpoint Source Pollutants in the Lake Doam Watershed (도암호 유역에서 비점오염물질의 유출부하 특성)

  • Kwak, Sungjin;Bhattrai, Bal Dev;Gim, Giyoung;Kang, Phil-Goo;Heo, Woomyung
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.135-147
    • /
    • 2018
  • In order to investigate the runoff characteristics of nonpoint source pollutants in the Lake Doam watershed, water quality and flow rate were monitored for 38-rainfall events from 2009 to 2016. The EMC values of SS, COD, TN and TP were in the range of 33~2,169, 3.5~56.9, 0.09~7.65 and $0.06{\sim}2.21mg\;L^{-1}$, respectively. As a result of analyzing the effect of rainfall factor on the nonpoint source pollutant load, EMCs of SS, COD and TP showed a statistically significant correlation with rainfall (RA) (p<0.01) and SS showed highly significant correlation with maximum rainfall intensity (MRI, R=0.48). The load ranges of SS, COD, TN and TP were 10.4~11,984.6, 1.1~724.4, 0.6~51.6 and $0.03{\sim}22.85ton\;event^{-1}$, respectively, showing large variation depending on the characteristics of rainfall events. The effect of rainfall on the load was analyzed. SS, COD and TP showed a positive correlation, but TN did not show any significant correlation. The annual load of SS was the highest with $88,645tons\;year^{-1}$ in 2011 when rainfall was the highest with 1,669 mm. The result of impact analysis of nonpoint source pollution reduction project and land-use change on runoff load showed that pollutant load significantly reduced from 2009 to 2014 but SS and TP loads were increased from 2014 to 2016 due to increase in construction area. Therefore, we suggested that nonpoint source pollution abatement plan should be continued to reduce the soil loss and pollutants during rainfall, and countermeasures to reduce nonpoint source pollution due to construction need to be established.

Evaluation of NPS Pollutant Reduction of Rice Straw Mats in Field (경작지에서 볏짚거적의 비점오염물질 저감 평가)

  • Won, Chul-Hee;Shin, Min-Hwan;Choi, Yong-Hun;Lim, Kyoung-Jay;Han, Young-Han;Kwon, Jay-Hyouk;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.37-44
    • /
    • 2013
  • We have examined the effect of rice straw mat (RSM) on the reduction of non-point source (NPS) pollution loads at soybean cultivations. The slope of the experimental plot was about 3 %. Monitoring was carried out for four years at conventional tillage (CT) in 2008~2009 years and RSM covered tillage in 2010~2011 years. Thirty-two rainfall events were monitored and analyzed during the study period. During the 2 years of 2008 and 2009, 20 rainfall runoff events were monitored. But in 2010 years, only 2 rainfall runoff events could be monitored. And in 2011 years, 10 rainfall runoff events was monitored. It was because the RSM cover enhanced infiltration and reduce runoff in 2010 and 2011. Average NPS pollution load (organic matters) of the RSM covered field was reduced by 72.1~94.2 % compared to that of CT field. NPS pollution load of TN and TP reduced by 67.5 % and 55.7 %, respectively. Especially, SS pollution load was reduced by 97.3 %. Based on the results, rice straw mat cover was considered as a promising best management practices (BMP) to reduce NPS pollution load. However, it was recommended that the results are limited to the field conditions and the same experiments must be performed on different soil textures, slopes, and crops if it is applied to the development of policies.

Analysis of Rainfall-Runoff Characteristics by Improvements to the Roughness Coefficient in a Storm Sewer System (우수관거 조도계수 개선에 따른 강우-유출 특성 분석)

  • Kim, Eung-Seok;Jo, Deok-Jun;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.282-286
    • /
    • 2017
  • Rapid industrialization and urbanization have resulted in an increase in impervious areas and an increase in runoff, therefore, this causes more flooding and damage in urban areas. This study has analyzed the effects of improvements to the roughness coefficient in storm sewer pipes on flood runoff and outflow through rainfall-runoff simulations. The simulations are implemented by three scenarios to evaluate effects of improvements to the roughness coefficient for the improved length ratio to the total length, diameters and mainlines of sewer pipes. The size and length of the sewer mains are large and long to effectively increase the flow rate to the outlet, secure the passage discharge capacity of the pipe and reduce the overflow. It is effective for flood reduction that the improvement to roughness coefficient is first conducted in mainlines with longer lengths and larger diameters. The results from this study can provide a guideline for prioritizing of the sewer pipe replacement.

Characteristics of Non-Point Pollutant Runoff in Highland Field Fields through Long-term Monitoring (장기 모니터링을 통한 고랭지 밭 지역의 비점오염물질 유출특성)

  • Lee, Su In;Shin, Jae Young;Shin, Min Hwan;Ju, So-Hui;Seo, Ji Yeon;Park, Woon Ji;Lee, Jae Young;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.85-96
    • /
    • 2017
  • In this research, I performed rainfall monitoring by selecting the spot which can represent high altitude cool farm region in recent 3 years, and tried to understand the characteristic of outflow of non-point pollutants coming from high altitude cool farm region. As a result, it was shown that reducing rainfall runoff in highland farm area can reduce non-point pollution load and should consider priority to reduce runoff through management resources when selecting abatement method. Additionally, it is judged that reduction method related to base run-off should be selected by performing research on material motion of TN.