• Title/Summary/Keyword: Rainfall occurrence ratio method

Search Result 11, Processing Time 0.021 seconds

Prediction of Andong Reservoir Inflow Using Ensemble Technique (앙상블 기법을 이용한 안동댐 유입량 예측)

  • Kang, Min Suk;Yu, Myungsu;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.795-804
    • /
    • 2014
  • In this study, Andong Reservoir monthly and ten days inflows from July 2011 to September 2011 are predicted using SWAT model and ensemble technique. The weight method using monthly and ten days rainfall forecasts from Korea Meteorological Administration is applied for accurate analysis. If the rainfall prediction announced by Korea Meteorological Administration is close to the actual rainfall, the PDF-Ratio Method shows the best result. If the past high rainfall occurrence is close to the actual rainfall, the modified PDF-Ratio method shows the best result. This method can improve the prediction accuracy even though the Korea Meteorological Administration forecast is not accurate. On the contrary, if Korea Meteorological Administration forecast is different from the actual rainfall and the past rainfall occurrence statistics of lower section, the uniform method shows the best result.

Appropriate Methods in Determining the Event Mean Concentration and Pollutant Removal Efficiency of a Best Management Practice

  • Maniquiz, Marla C.;Choi, Ji-Yeon;Lee, So-Young;Cho, Hye-Jin;Kim, Lee-Hyung
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.215-223
    • /
    • 2010
  • This study attempted to develop and suggest a more appropriate method for the determination of event mean concentration (EMC) and pollutant removal efficiency of a stormwater best management practice (BMP) considering rainfall. The stormwater runoff and hydrologic data gathered from 22 storm events during a 28-month monitoring period on a swirl and filtration type of BMP were used to evaluate the developed methods. Based on the findings, the modified EMC method resulted in lower (average) values than the overall EMC, although the differences were not significant (P>0.05). By comparison, the developed 'Rainfall Occurrence Ratio' (ROR) method was most significantly correlated (r=0.967 to 988, P<0.009) with the other existing removal efficiency determination methods such as the 'Efficiency Ratio' (ER), 'Summation of Loads' (SOL) and 'Regression of Loads' (ROL) methods. In addition, the ROR method gave the highest efficiency values, with no significant differences with any of the pollutant parameters, unlike the other three methods. These results were obtained because the ROR method integrated both pollutant loading and rainfall, which are not considered by the other three methods. Therefore, this study proved the suitability of the modified EMC and ROR methods for application in other BMP monitoring studies.

Computation of Criterion Rainfall for Urban Flood by Logistic Regression (로지스틱 회귀에 의한 도시 침수발생의 한계강우량 산정)

  • Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.713-723
    • /
    • 2019
  • Due to the climate change and various rainfall pattern, it is difficult to estimate a rainfall criterion which cause inundation for urban drainage districts. It is necessary to examine the result of inundation analysis by considering the detailed topography of the watershed, drainage system, and various rainfall scenarios. In this study, various rainfall scenarios were considered with the probabilistic rainfall and Huff's time distribution method in order to identify the rainfall characteristics affecting the inundation of the Hyoja drainage basin. Flood analysis was performed with SWMM and two-dimensional inundation analysis model and the parameters of SWMM were optimized with flood trace map and GA (Genetic Algorithm). By linking SWMM and two-dimensional flood analysis model, the fitness ratio between the existing flood trace and simulated inundation map turned out to be 73.6 %. The occurrence of inundation according to each rainfall scenario was identified, and the rainfall criterion could be estimated through the logistic regression method. By reflecting the results of one/two dimensional flood analysis, and AWS/ASOS data during 2010~2018, the rainfall criteria for inundation occurrence were estimated as 72.04 mm, 146.83 mm, 203.06 mm in 1, 2 and 3 hr of rainfall duration repectively. The rainfall criterion could be re-estimated through input of continuously observed rainfall data. The methodology presented in this study is expected to provide a quantitative rainfall criterion for urban drainage area, and the basic data for flood warning and evacuation plan.

Estimation of Drought Rainfall by Regional Frequency Analysis using L and LH-Moments(I) - On the Method of L-Moments - (L 및 LH-모멘트법과 지역빈도분석에 의한 가뭄우량의 추정(I) - L-모멘트법을 중심으로 -)

  • 이순혁;윤성수;맹승진;류경식;주호길
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.97-109
    • /
    • 2003
  • This study is mainly conducted to derive the design drought rainfall by the consecutive duration using probability weighted moments with rainfall in the regional drought frequency analysis. It is anticipated to suggest optimal design drought rainfall of hydraulic structures for the water requirement and drought frequency of occurrence for the safety of water utilization through this study. Preferentially, this study was conducted to derive the optimal regionalization of the precipitation data that can be classified by the climatologically and geographically homogeneous regions all over the regions except Cheju and Ulreung islands in Korea. Five homogeneous regions in view of topographical and climatological aspects were accomplished by K-means clustering method. Using the L-moment ratio diagram and Kolmogorov-Smirnov test, generalized extreme value distribution was confirmed as the best fitting one among applied distributions. At-site and regional parameters of the generalized extreme value distribution were estimated by the method of L-moments. Design drought rainfalls using L-moments following the consecutive duration were derived by the at-site and regional analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design drought rainfall derived by at-site and regional analysis in the observed an simulated data were computed and compared. In has shown that the regional frequency analysis procedure can substantially more reduce the RRMSE. RBIAS and RR in RRMSE than those of at-site analysis in the prediction of design drought rainfall. Consequently, optimal design drought rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

Two-dimensional Inundation Analysis Using Stochastic Rainfall Variation and Geographic Information System (추계학적 강우변동생성 기법과 GIS를 연계한 2차원 침수해석)

  • Lee, Jin-Young;Cho, Wan-Hee;Han, Kun-Yeun;Ahn, Ki-Hong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.101-113
    • /
    • 2010
  • Recently actual rainfall pattern is decreasing rainy days and increasing in rainfall intensity and the frequency of flood occurrence is also increased. To consider recent situation, Engineers use deterministic methods like a PMP(Probable Maximum Precipitation). If design storm wouldn't occur, increasing of design criteria is extravagant. In addition, the biggest structure cause trouble with residents and environmental problem. And then it is necessary to study considering probability of rainfall parameter in each sub-basin for design of water structure. In this study, stochastic rainfall patterns are generated by using log-ratio method, Johnson system and multivariate Monte Carlo simulation. Using the stochastic rainfall patterns, hydrological analysis, hydraulic analysis and 2nd flooding analysis were performed based on GIS for their applicability. The results of simulations are similar to the actual damage area so the methodology of this study should be used about making a flood risk map or regidental shunting rout map against the region.

Estimation of Soil Erosion and Sediment Outflow in the Mountainous River Catchment (산지하천 유역의 토양침식량과 유사유출량 평가)

  • Kim, DongPhil;Kim, JooHun
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.221-233
    • /
    • 2014
  • Soil erosion, transportation, and sedimentation by water flow often occur in a stream. This excessive occurrence threatens the safety of hydraulic structures, and aggravates natural disasters like flood. To prevent soil disaster according to the soil erosion, it is necessary to predict accurate sediment outflow primarily. Besides, it is very important to choose appropriate models by basin characteristics, to estimate accurate quantity of related factors, and to acquire available hydrological data. Therefore, the purpose of this study is to estimate soil erosion amount and sediment amount according to rainfall-runoff by using rainfall, discharge, and sediment in the Seolmacheon experimental catchment. And, it proposed sediment delivery ratio of the Seolmacheon catchment by result of studying sediment delivery ratio. Hereafter, this study will estimate sediment delivery ratio by basin characteristics, and formulate the method of estimating soil erosion and sediment outflow in various conditions by applying the results in other catchments.

Analysis and Validation of Geo-environmental Susceptibility for Landslide Occurrences Using Frequency Ratio and Evidential Belief Function - A Case for Landslides in Chuncheon in 2013 - (Frequency Ratio와 Evidential Belief Function을 활용한 산사태 유발에 대한 환경지리적 민감성 분석과 검증 - 2013년 춘천 산사태를 중심으로 -)

  • Lee, Won Young;Sung, Hyo Hyun;Ahn, Sejin;Park, Seon Ki
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.61-89
    • /
    • 2020
  • The objective of this study is to characterize landslide susceptibility depending on various geo-environmental variables as well as to compare the Frequency Ratio (FR) and Evidential Belief Function (EBF) methods for landslide susceptibility analysis of rainfall-induced landslides. In 2013, a total of 259 landslides occurred in Chuncheon, Gangwon Province, South Korea, due to heavy rainfall events with a total cumulative rainfall of 296~721mm in 106~231 hours duration. Landslides data were mapped with better accuracy using the geographic information system (ArcGIS 10.6 version) based on the historic landslide records in Chuncheon from the National Disaster Management System (NDMS), the 2013 landslide investigation report, orthographic images, and aerial photographs. Then the landslides were randomly split into a testing dataset (70%; 181 landslides) and validation dataset (30%; 78 landslides). First, geo-environmental variables were analyzed by using FR and EBF functions for the full data. The most significant factors related to landslides were altitude (100~200m), slope (15~25°), concave plan curvature, high SPI, young timber age, loose timber density, small timber diameter, artificial forests, coniferous forests, soil depth (50~100cm), very well-drained area, sandy loam soil and so on. Second, the landslide susceptibility index was calculated by using selected geo-environmental variables. The model fit and prediction performance were evaluated using the Receiver Operating Characteristic (ROC) curve and the Area Under Curve (AUC) methods. The AUC values of both model fit and prediction performance were 80.5% and 76.3% for FR and 76.6% and 74.9% for EBF respectively. However, the landslide susceptibility index, with classes of 'very high' and 'high', was detected by 73.1% of landslides in the EBF model rather than the FR model (66.7%). Therefore, the EBF can be a promising method for spatial prediction of landslide occurrence, while the FR is still a powerful method for the landslide susceptibility mapping.

A Study on the Vulnerability Assessment of Solar Power Generation Facilities Considering Disaster Information (재해정보를 고려한 태양광발전시설의 취약성 평가에 관한 연구)

  • Heejin Pyo
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.57-71
    • /
    • 2024
  • This study aims to develop an evaluation method for solar power facilities considering disaster impacts and to analyse the vulnerabilities of existing facilities. Haenam-gun in Jeollanam-do, where the reassessment of existing facilities is urgent, was selected as the study area. To evaluate the vulnerability from a more objective perspective, principal component analysis and entropy methods were utilised. Seven vulnerability assessment indicators were selected: maximum hourly rainfall, maximum wind speed, number of typhoon occurrence days, number of rainfall days lasting more than five days, maximum daily rainfall, impermeable area ratio, and population density. Among these, maximum hourly rainfall, maximum wind speed, maximum daily rainfall, and number of rainfall days lasting more than five days were found to have the highest weights. The overlay of the derived weights showed that the southeastern regions of Haenam-eup and Bukil-myeon were classified as Grade 1 and 2, whereas the northern regions of Hwawon-myeon, Sani-myeon, and Munnae-myeon were classified as Grade 4 and 5, indicating differences in vulnerability. Of the 2,133 facilities evaluated, 91.1% were classified as Grade 3 or higher, indicating a generally favourable condition. However, there were more Grade 1 facilities than Grade 2, highlighting the need for countermeasures. This study is significant in that it evaluates solar power facilities considering urban disaster resilience and is expected to be used as a basic resource for the installation of new facilities or the management and operation of existing ones.

Analysis of Debris Flow Deposition based on Topographic Characteristics of Debris Flow Path (유하부 지형 특성에 따른 토석류 퇴적 분석)

  • Kim, Gihong;Youn, Junhee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.471-481
    • /
    • 2013
  • Recently, the frequency of debris flow disaster has increased, which is one of the natural disasters during extremely heavy rainfall condition. This paper described the analysis method about deposition characteristics of debris flow using topographic characteristics of debris flow path. First, we observed topographic changes by differencing high- resolution LiDAR DEMs acquired before and after the occurrence of debris flow event. We assumed that deposition on outside of debris flow path was generated by movements due to the inertia of debris flows. Then, we analyzed three topographic characteristics of debris flow path: slope in flow direction, transition angle of flow path, and the net efficiency(L/H) of debris flows defined by the ratio of transport length(L) and elevation difference(H). We applied this method to Umyeon Mountain debris flow event in July 2011. The results showed that deposition on outside of debris flow path due to the inertia of debris flows was significantly related to the transition angle of debris flow path. Also, we figured out that there were more frequent such depositions in locations where the ratio of 'transition angle / (L/H)' is over 8.

A Study on Estimation of Levee Safety Map for Determining the Priority of River Maintenance (하천 유지관리 우선순위 결정을 위한 제방안전도맵 산정방법 연구)

  • Yoon, Kwang Seok;Kim, Sooyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.17-25
    • /
    • 2017
  • Owing to recent climate change, the scale of rainfall tends to increase gradually and the risk of flooding has increased. Therefore, the importance of improving the levee management and disaster response is increasing. Levee management in Korea is carried out at the level of damage recovery after the occurrence of damage. Therefore, it is necessary to develop a technology for predicting and managing the levee safety with proactive river management. In this study, a method to estimate the safety against erosion and overflow was suggested. A map of levee safety that can be used as basic data is presented by displaying the levee safety on the map. The levee erosion safety was calculated as the ratio of the internal and external force for each shore type. The levee overflow safety was calculated as the ratio of the maximum conveyance and design flood. The maximum conveyance was a discharge when the level of the river was equal to the level of the levee crown. The levee safety was classified into 5 grades: very safe, safe, normal, dangerous, and very dangerous. As a research area from downstream of Nam River Dam to Nakdong River Junction, the levee safety against erosion and overflow was estimated for all levees and all cross-sections of the river. The levee safety was displayed on a map using GIS. Through the levee safety map as a result of this study, the levee safety can be observed intuitively. Using the levee safety map, a maintenance plan for a river can be easy to build. This levee safety map can be used to help determine the priority of investment for efficient budget used.