• Title/Summary/Keyword: Rainfall forecast

Search Result 257, Processing Time 0.03 seconds

An improvement on the Criteria of Special Weather Report for Heavy Rain Considering the Possibility of Rainfall Damage and the Recent Meteorological Characteristics (최근 기상특성과 재해발생이 고려된 호우특보 기준 개선)

  • Kim, Yeon-Hee;Choi, Da-Young;Chang, Dong-Eon;Yoo, Hee-Dong;Jin, Gee-Beom
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.481-495
    • /
    • 2011
  • This study is performed to consider the threshold values of heavy rain warning in Korea using 98 surface meteorological station data and 590 Automatic Weather System stations (AWSs), damage data of National Emergency Management Agency for the period of 2005 to 2009. It is in need to arrange new criteria for heavy rain considering concept of rainfall intensity and rainfall damage to reflect the changed characteristics of rainfall according to the climate change. Rainfall values from the most frequent rainfall damage are at 30 mm/1 hr, 60 mm/3 hr, 70 mm/6 hr, and 110 mm/12 hr, respectively. The cumulative probability of damage occurrences of one in two due to heavy rain shows up at 20 mm/1 hr, 50 mm/3 hr, 80 mm/6 hr, and 110 mm/12 hr, respectively. When the relationship between threshold values of heavy rain warning and the possibility of rainfall damage is investigated, rainfall values for high connectivity between heavy rain warning criteria and the possibility of rainfall damage appear at 30 mm/1 hr, 50 mm/3 hr, 80 mm/6 hr, and 100 m/12 hr, respectively. It is proper to adopt the daily maximum precipitation intensity of 6 and 12 hours, because 6 hours rainfall might be include the concept of rainfall intensity for very-short-term and short-term unexpectedly happened rainfall and 12 hours rainfall could maintain the connectivity of the previous heavy rain warning system and represent long-term continuously happened rainfall. The optimum combinations of criteria for heavy rain warning of 6 and 12 hours are 80 mm/6 hr or 100 mm/12 hr, and 70 mm/6 hr or 110 mm/12 hr.

A Study on Application of Very Short-range-forecast Rainfall for the Early Warning of Mud-debris Flows (토사재해 예경보를 위한 초단기 예측강우의 활용에 대한 연구)

  • Jun, Hwandon;Kim, Soojun
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.366-374
    • /
    • 2017
  • The objective of this study is to explore the applicability of very short-range-forecast rainfall for the early warning of mud-debris flows. An artificial neural network was applied to use the very short-range-forecast rainfall data. The neural network is learned by using the relationship between the radar and the AWS, and forecasted rainfall is estimated by replacing the radar rainfall with the MAPLE data as the very short-range-forecast rainfall data. The applicability of forecasted rainfall by the MAPLE was compared with the AWS rainfall at the test-bed using the rainfall criteria for cumulative rainfall of 6hr, 12hr, and 24hr respectively. As a result, it was confirmed that forecasted rainfall using the MAPLE can be issued prior to the AWS warning.

Assessing the Benefits of Incorporating Rainfall Forecasts into Monthly Flow Forecast System of Tampa Bay Water, Florida (하천 유량 예측 시스템 개선을 위한 강우 예측 자료의 적용성 평가: 플로리다 템파 지역 사례를 중심으로)

  • Hwang, Sye-Woon;Martinez, Chris;Asefa, Tirusew
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.127-135
    • /
    • 2012
  • This paper introduced the flow forecast modeling system that a water management agency in west central Florida, Tampa Bay Water has been operated to forecast monthly rainfall and streamflow in the Tampa Bay region, Florida. We evaluated current 1-year monthly rainfall forecasts and flow forecasts and actual observations to investigate the benefits of incorporating rainfall forecasts into monthly flow forecast. Results for rainfall forecasts showed that the observed annual cycle of monthly rainfall was accurately reproduced by the $50^{th}$ percentile of forecasts. While observed monthly rainfall was within the $25^{th}$ and $75^{th}$ percentile of forecasts for most months, several outliers were found during the dry months especially in the dry year of 2007. The flow forecast results for the three streamflow stations (HRD, MB, and BS) indicated that while the 90 % confidence interval mostly covers the observed monthly streamflow, the $50^{th}$ percentile forecast generally overestimated observed streamflow. Especially for HRD station, observed streamflow was reproduced within $5^{th}$ and $25^{th}$ percentile of forecasts while monthly rainfall observations closely followed the $50^{th}$ percentile of rainfall forecasts. This was due to the historical variability at the station was significantly high and it resulted in a wide range of forecasts. Additionally, it was found that the forecasts for each station tend to converge after several months as the influence of the initial condition diminished. The forecast period to converge to simulation bounds was estimated by comparing the forecast results for 2006 and 2007. We found that initial conditions have influence on forecasts during the first 4-6 months, indicating that FMS forecasts should be updated at least every 4-6 months. That is, knowledge of initial condition (i.e., monthly flow observation in the last-recent month) provided no foreknowledge of the flows after 4-6 months of simulation. Based on the experimental flow forecasts using the observed rainfall data, we found that the 90 % confidence interval band for flow predictions was significantly reduced for all stations. This result evidently shows that accurate short-term rainfall forecasts could reduce the range of streamflow forecasts and improve forecast skill compared to employing the stochastic rainfall forecasts. We expect that the framework employed in this study using available observations could be used to investigate the applicability of existing hydrological and water management modeling system for use of stateof-the-art climate forecasts.

Development Method of Early Warning Systems for Rainfall Induced Landslides (강우에 의한 돌발 산사태 예·경보 시스템 구축 방안)

  • Kim, Seong-Pil;Bong, Tae-Ho;Bae, Seung-Jong;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.135-141
    • /
    • 2015
  • The objective of this study is to develop an early warning system for rainfall induced landslides. For this study, we suggested an analysis process using rainfall forecast data. 1) For a selected slope, safety factor with saturated depth was analyzed and safety factor threshold was established (warning FS threshold=1.3, alarm FS threshold=1.1). 2) If rainfall started, saturated depth and safety factor was calculated with rainfall forecast data, 3) And every hour after safety factor is compared with threshold, then warning or alarm can issued. In the future, we plan to make a early warning system combined with the in-situ inclinometer sensors.

Monthly rainfall forecast of Bangladesh using autoregressive integrated moving average method

  • Mahmud, Ishtiak;Bari, Sheikh Hefzul;Rahman, M. Tauhid Ur
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.162-168
    • /
    • 2017
  • Rainfall is one of the most important phenomena of the natural system. In Bangladesh, agriculture largely depends on the intensity and variability of rainfall. Therefore, an early indication of possible rainfall can help to solve several problems related to agriculture, climate change and natural hazards like flood and drought. Rainfall forecasting could play a significant role in the planning and management of water resource systems also. In this study, univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was used to forecast monthly rainfall for twelve months lead-time for thirty rainfall stations of Bangladesh. The best SARIMA model was chosen based on the RMSE and normalized BIC criteria. A validation check for each station was performed on residual series. Residuals were found white noise at almost all stations. Besides, lack of fit test and normalized BIC confirms all the models were fitted satisfactorily. The predicted results from the selected models were compared with the observed data to determine prediction precision. We found that selected models predicted monthly rainfall with a reasonable accuracy. Therefore, year-long rainfall can be forecasted using these models.

Performance comparison of rainfall and flood forecasts using short-term numerical weather prediction data from Korea and Japan (한-일 단기 수치예보자료를 이용한 강우 및 홍수 예측 성능 비교)

  • Yu, Wansik;Yoon, Seongsim;Choi, Mikyoung;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.8
    • /
    • pp.537-549
    • /
    • 2017
  • This study evaluated the accuracy of rainfall and flood forecasts in Sancheong basin with three rainfall events such as typhoon and stationary front by using LDAPS provided by Korea Meteorological Agency and MSM provided by Japan Meteorological Agency. In the rainfall forecast result, both LDAPS and MSM showed high forecast accuracy for wide-area prediction such as typhoon event, but local-area prediction such as stationary front has a limit to quantitative precipitation forecast (QPF). In the flood forecast result, the forecast accuracy was improved with the increase of the lead time, and it showed the possibility of LDAPS and MSM in the field of rainfall and flood forecast by linking meteorology and water resources.

Effect of Urbanization on Rainfall Events during the 2010 Summer Intensive Observation Period over Seoul Metropolitan Area (2010년 여름철 수도권 집중관측기간 강수 사례들에서 나타나는 도시화 효과)

  • Kim, Do-Woo;Kim, Yeon-Hee;Kim, Ki-Hoon;Shin, Seung-Sook;Kim, Dong-Kyun;Hwang, Yoon-Jeong;Park, Jong-Im;Choi, Da-Young;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.219-232
    • /
    • 2012
  • The intensive observation (ProbeX-2010) was performed to investigate an urban effect on summer rainfall over the Seoul metropolitan area from 13 August to 3 September 2010. Two kinds of urban effect were detected. First, weak rainfall (${\leq}1\;mm\;hr^{-1}$) was observed more frequently in the downwind area of Seoul than any other area of the country. The high frequency of weak rainfall in the downwind area was also confirmed from the recent five years of observational data (2006-2010). Because the high frequency was more apparent in mountainous regions during nighttime, the weak rainfall seems to be caused by a combined effect of urbanization and topography. Second, sporadically, a convective system was developed rapidly in the downwind area of Seoul, causing heavy rainfall (${\geq}10\;mm\;hr^{-1}$). It can be most clearly seen in series of radar images around 1300-1500 KST 27 August 2010. We investigated in detail the synoptic and local weather and upper air conditions. As a result, not only urban-induced high sensible heat but also conditionally unstable atmosphere (especially unstable in low level) and low level moisture were pointed out as important factors that contributed to urban-induced heavy rainfall.

Mesoscale Features and Forecasting Guidance of Heavy Rain Types over the Korean Peninsula (한반도 호우유형의 중규모 특성 및 예보 가이던스)

  • Kim, Sunyoung;Song, Hwan-Jin;Lee, Hyesook
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.463-480
    • /
    • 2019
  • This study classified heavy rain types from K-means clustering for the hourly relationship between rainfall intensity and cloud top height over the Korean peninsula, and then examined their statistical characteristics for the period of June~August 2013~2018. Total rainfall amount of warm-type events was 2.65 times larger than that of the cold-type, whereas the lightning frequency divided by total rainfall for the warm-type was only 46% of the cold-type. Typical cold-type cases exhibited high cloud top height around 16 km, large reflectivity in the upper layer, and frequent lightning flashes under convectively unstable condition. Phenomenally, the cold-type cases corresponded to cloud cluster or multi-cell thunderstorms. However, two warm-type cases related to Changma and typhoon were characterized by heavy rainfall due to long duration, relatively low cloud top height and upper-level reflectivity, and the absence of lightning under the convectively neutral and extremely humid conditions. This study further confirmed that the forecast skill of rainfall could be improved by applying correction factor with the overestimation for cold-type and underestimation for warm-type cases in the Local Data Assimilation and Prediction System (LDAPS) operational model (e.g., BIAS score was improved by 5%).

Predictability for Heavy Rainfall over the Korean Peninsula during the Summer using TIGGE Model (TIGGE 모델을 이용한 한반도 여름철 집중호우 예측 활용에 관한 연구)

  • Hwang, Yoon-Jeong;Kim, Yeon-Hee;Chung, Kwan-Young;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.287-298
    • /
    • 2012
  • The predictability of heavy precipitation over the Korean Peninsula is studied using THORPEX Interactive Grand Global Ensemble (TIGGE) data. The performance of the six ensemble models is compared through the inconsistency (or jumpiness) and Root Mean Square Error (RMSE) for MSLP, T850 and H500. Grand Ensemble (GE) of the three best ensemble models (ECMWF, UKMO and CMA) with equal weight and without bias correction is consisted. The jumpiness calculated in this study indicates that the GE is more consistent than each single ensemble model. Brier Score (BS) of precipitation also shows that the GE outperforms. The GE is used for a case study of a heavy rainfall event in Korean Peninsula on 9 July 2009. The probability forecast of precipitation using 90 members of the GE and the percentage of 90 members exceeding 90 percentile in climatological Probability Density Function (PDF) of observed precipitation are calculated. As the GE is excellent in possibility of potential detection of heavy rainfall, GE is more skillful than the single ensemble model and can lead to a heavy rainfall warning in medium-range. If the performance of each single ensemble model is also improved, GE can provide better performance.

Development of a Short-term Rainfall Forecast Model Using Sequential CAPPI Data (연속 CAPPI 자료를 이용한 단기강우예측모형 개발)

  • Kim, Gwangseob;Kim, Jong Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.543-550
    • /
    • 2009
  • The traditional simple extrapolation type short term quantitative rainfall forecast can not realize the evolution of rainfall generating weather system. To overcome the drawback of the linear extrapolation type rainfall forecasting model, the history of a weather system from sequential weather radar information and a polynomial regression technique were used to generate forecast fileds of x-directional, y-directional velocities and radar reflectivity which considered the nonlinear behavior related to the evolution of weather systems. Results demonstrated that test statistics of forecasts using the developed model is better than that of 2-CAPPI forecast. However there is still a large room to improve the forecast of spatial and temporal evolution of local storms since the model is not based on a fully physical approach but a statistical approach.