• Title/Summary/Keyword: Rainfall duration

Search Result 553, Processing Time 0.026 seconds

Some models for rainfall focused on the inner correlation structure

  • Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1290-1294
    • /
    • 2004
  • In this study, new stochastic point rainfall models which can consider the correlation structure between rainfall intensity and duration are developed. In order to consider the negative and positive correlation simultaneously, the Gumbels type-II bivariate distribution is applied, and for the cluster structure of rainfall events, the Neyman-Scott cluster point process is selected. In the theoretical point of view, it is shown that the models considering the dependent structure between rainfall intensity and duration have slightly heavier tail autocorrelation functions than the corresponding independent mode]s. Results from generating long time rainfall events show that the dependent models better reproduce historical rainfall time series than the corresponding independent models in the sense of autocorrelation structures, zero rainfall probabilities and extreme rainfall events.

  • PDF

Rainfall Adjustment on Duration and Topographic Elevation (지속시간 및 표고에 따른 강우량 보정에 관한 연구)

  • Um, Myoung-Jin;Cho, Won-Cheol;Rim, Hae-Wook
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.511-521
    • /
    • 2007
  • The objective of this study is to develop a method of rainfall adjustment on duration and topographic elevation for rainfall data in Jejudo. The method of rainfall adjustment is based on the polynomial regression analysis for the hourly rainfall data and the distribution of observatories of korea meteorological administration. As the results of modeling have shown, duration and rainfall are more correlated than topographic elevation and rainfall, and the model which considers only an elevation exaggerates the amount of rainfall adjustment. Hence the model of duration-elevation-rainfall is more competitive to the natural rainfall event than the model of topographic elevation-rainfall. However this model require to supplement a small number of rainfall observatories and short observed period.

A Study on the Effects of the Type of Rainfall Distribution upon the Variation of the Critical Storm Duration : Sanbon Watershed (강우분포형태에 따른 임계지속기간의 변화 연구: 산본유역을 중심으로)

  • Yun, Yeo-Jin;Jeong, Sun-U;Jeon, Byeong-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.375-384
    • /
    • 1998
  • In determining design runoff for the design of drainage systems, the concept of critical storm duration is applied. However, rainfall distribution is usually determined without well-defined standards. In this paper, through the application of ILLUDAS model to Sanbon basin, which is a small urbanized watershed, effects of various rainfall distributing types upon the determination of critical storm duration are throughly analyzed. As a result, it is revealed that peak discharge rates as well as critical storm duration are greatly influenced by the applied of rainfall distributions such as uniform, triangular, trapezoid, huff, central type using IDF curve. Keywords : critical storm duration, rainfall distribution, urban runoff, design storm, ILLUDAS.

  • PDF

Estimation of Probable Maximum Precipitation in Thailand Using Geographic Information System

  • Kingpaiboon, Sununtha;Netwong, Titiya
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.804-806
    • /
    • 2003
  • Probable Maximum Precipitation (PMP) is essential in the design of hydraulic structures such as dams, weirs and flood control structures. Up to the present, PMP has been derived from any proper single storm which can have a large error. PMP values should be evaluated from many historic heavy storm events from all over the country. Since this can be done at the spots of storm occurring and the calculated PMP from all spots in the country can be correlated. The objectives of this study are therefore to evaluate PMP from historic heavy storm data from 1972 to 2000 by using meteorological method, then to correlate and to present the results using GIS. The maximized rainfall depths can be calculate from depth of heavy rainfall and dew point temperature, and then can be analyzed for each rainfall duration to obtain spatial rainfall distribution by using GIS. The depth-area-duration relationship of maximized rainfall can be obtained and this helps to develop enveloped curves . The results from this study are a set of contour maps of PMP for each rainfall duration for all over the country and the depth-area-duration relationships for the area of 100 to 50,000 km.$^{2}$ at duration of 1, 2 and 3 days.

  • PDF

Trend analysis of rainfall characteristics and its impact on stormwater runoff quality from urban and agricultural catchment

  • Salim, Imran;Paule-Mercado, Ma. Cristina;Sajjad, Raja Umer;Memon, Sheeraz Ahmed;Lee, Bum-Yeon;Sukhbaatar, Chinzorig;Lee, Chang-Hee
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.45-55
    • /
    • 2019
  • Climate change has significantly affected the rainfall characteristics which can influence the pollutant build-up and wash-off patterns from the catchment. Therefore, this study explored the influence of varying rainfall characteristics on urban and agricultural runoff pollutant export using statistical approaches. For this purpose, Mann-Kendall and Pettitt's test were applied to detect the trend and breakpoint in rainfall characteristics time series. In addition, double mass curve and correlation analysis were used to drive the relationship between rainfall-runoff and pollutant exports from both catchments. The results indicate a significant decreased in total rainfall and average rainfall intensity, while a significant increased trend for antecedents dry days and total storm duration over the study periods. The breakpoint was determined to be 2013 which shows remarkable trend shifts for total rainfall, average rainfall intensity and antecedents dry days except total duration. Double mass curve exhibited a straight line with significant rainfall-runoff relationship indicates a climate change effect on both sites. Overall, higher pollutant exports were observed at both sites during the baseline period as compared to change periods. In agricultural site, most of the pollutants exhibited significant (p< 0.05) association with total rainfall, average rainfall intensity and total storm duration. In contrast, pollutants from urban site significantly correlated with antecedent dry days and average rainfall intensity. Thus, total rainfall, average rainfall intensity and total duration were the significant factors for the agricultural catchment while, antecedents dry days and average rainfall intensity were key factors in build-up and wash-off from the urban catchment.

Derivation of Rainfall Intensity-Duration-Frequency Equation Based on the Approproate Probability Distribution (지속기간별 강우자료의 적정분포형 선정을 통한 확률강우강도식의 유도)

  • Heo, Jun-Haeng;Kim, Gyeong-Deok;Han, Jeong-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.247-254
    • /
    • 1999
  • The frequency analyses of annual maximum rainfall data for 22 rainfall gauging stations is Korea were performed. The method of moments (MOM), maximum likelihood (ML), and probability weighted moments (PWM) were used in parameter estimation. The GEV distribution was selected as an appropriate model for annual maximum rainfall data based on parameter validity condition, graphical analysis, separation effect, and goodness of fit tests. For the selected GEV model, spatial analysis was performed and rainfall intensity-duration-frequency equation was derived by using linearization technique. The derived rainfall intensity-duration-frequency equation can be used for estimating rainfall quantiles of the selected stations with convenience and reliability in practice.

  • PDF

Critical Duration of Design Rainfall for the Design of Storm Sewer in Seoul (우수관거 설계를 위한 계획강우의 임계지속기간 -서울 지역을 중심으로-)

  • 이재준;이정식;전병호;이종태
    • Water for future
    • /
    • v.26 no.2
    • /
    • pp.49-57
    • /
    • 1993
  • A hydrological method is performed to determine the critical duration of design rainfall for the design of storm sewer in Seoul. To seize the effect of the duration and the temporal distribution of the rainfall to the peak discharge of the storm sewer, the Huff's quartile method is used as a temporal pattern for the design rainfall of any durations (9 cases for 20-240 min.) with 10 years return period. The critical duration of design rainfall is determined as the duration which maximizes the peak discharge. This study is applied to 18 urban drainage systems in Seoul. The ILLUDAS model is applied to runoff analysis, and the result shows that the duration which maximizes peak discharge is 30, 60 minutes generally. The relation diagram between peak discharge for the critical duration and watershed area is prepared for the design of storm sewer.

  • PDF

Sensitivity Analysis of ILLUDAS Model Parameters Based on Rainfall Conditions (강우조건이 ILLUDAS 모형 매개변수의 민감도에 미치는 영향 분석)

  • Lee, Jong Tae;Kim, Tae Hwa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.748-757
    • /
    • 2004
  • In this study, we analyzed the sensitivity of parameters which affect the result of ILLUDAS model, in the various rainfall conditions. The three basins including Namgaja, Kings creek, Gray haven were selected for this research. The rainfall conditions are considered in terms of the rainfall frequency, the duration and the distribution. In most cases, the impermeability area ratio, the sewer slope, and the sewer roughness coefficient give more significant effects on the results than others. The results show that as increasing the rainfall frequency, the sensitivity of the parameters, sewer slope and roughness coefficient are rised, while the impermeability area ratio is decreasing. And also, for the duration of rainfall, the impermeability area ratio's sensitivity shows similar tendency. In case of the rainfall distribution, the parameters of the sewer roughness and the impermeability area ratio show more sensitive in Huff distribution. Especially, The impermeability area ratio is the most sensitive parameter in Central blocking and Yen & Chow distributions respectively.

A Study on the Improvement of Huff's Method for Applying in Korea : II. Improvement of Huff's Method (Huff 강우시간분포방법의 개선방안 연구 : II. Huff 방법의 개선방안)

  • Jang Su-Hyung;Yoon Jae-Young;Yoon Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.9 s.170
    • /
    • pp.779-786
    • /
    • 2006
  • In this study, we propose a new method that utilizes rainfall data in and out of a basin, which is greater than 25.4mm for point rainfall or 12.7mm for areal mean rainfall respectively. From our analysis, most frequent quartile for point and areal mean rainfall were found to be the same in general for various rainfall duration intervals. From an evaluation of design rainfall per each rainfall duration distributed in time by the MOCT(Ministry of Construction and Transportation) version of Huff's method and this study, peak rainfall intensity by this study was found to be greater than the one by MOCT, but there were no consistent increase or decrease of this difference with rainfall durations. Using the distributed design rainfall per each duration by MOCT and this study, corresponding flood inflow hydrographs were simulated and compared each other. Contrary to the case of peak rainfall intensity, difference in peak flow by both methods per each rainfall duration started to increase from about 12-hr duration. Especially, the difference in peak flow was significant when critical rainfall duration was considered, and this trend was similar for peak flows of other rainfall durations. Therefore, the method proposed in this study is thought to be the effective procedure for the construction of dimensionless cumulative rainfall curve that is representative of a basin while considering time distribution characteristics for different rainfall durations.

A Study on a Runoff Coefficient of Block Paved Area with Considering Regional Rainfall Distribution (지역별 강우분포를 고려한 블록포장지역의 유출계수 산정에 관한 연구)

  • Kang, Shin-Kweon;Kim, Tae-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.111-119
    • /
    • 2008
  • The runoff coefficient for a block paved area is determined with regional rainfall distribution. The Rational Method is a basic equation of a drainage system design and is a function of runoff coefficient, rainfall intensity and area. A runoff coefficient is the ratio of rainfall intensity and runoff. The rainfall intensity which is a function of the return period and rainfall duration differs by region. Therefore the runoff coefficient varies regionally even though there is the same return period and rainfall duration. The ratio of rainfall intensity and rainfall duration is decided by the loss of rainfall. The constant infiltration capacity of Horton's equation is adopted to determine the loss of rainfall. As time passed, the joint of the block paved area through which the infiltration occurs is covered by pollution material, sandy dust, pollen and is hardened by foot pressure, so the constant infiltration capacity may decrease. Six different sites were selected to verify the assumption of the constant infiltration capacity decrease and 10 year return period. 10, 20, and 30 minute rainfall duration were applied to calculate rainfall intensity. The results indicate that the Horton's constant infiltration capacity decreases over time and the minimum constant infiltration capacity is selected to compute runoff coefficients. The runoff coefficients varied by region ranging from $0.94{\sim}0.84$ for 10 minute of rainfall duration.