• 제목/요약/키워드: Rainfall depth

검색결과 462건 처리시간 0.023초

한강수계의 관개용수 일별 양수량 조사 (Surveying the Daily Pumpage for Irrgating Paddy Rice in the Han River Basin)

  • 임상준;박승우;김상민;김현준
    • 한국농공학회지
    • /
    • 제42권1호
    • /
    • pp.57-65
    • /
    • 2000
  • The objective of this paper are to present a realistic methodology to estimate the daily water supply rates form irrigation pumping stattions, to validate it with the field data, and to report the daily irrigation pumping rates from the Han river basin. Five-year historical pumping records were collected from seventy-three pumping stations in the Han river basin. And the daily pumping rates were estimated from the electrical consumption records. The pumping patterns from the stations were analyzed and the results were applied to ungauged pumping stations in the basin. The method was appliedto five stations which were field monitored during the irragation periods in 1998. The relative errors between the observed and simulated water pumpage ranged from 1.4 to 7.0 percent. This indicates that the proposed method is valid to apply for estimating the pumping rates for agricultural lands. During 1993 to 1997, the annual average water pumpaging from the Han river and the tributaries were 350 million cubic meter. The annual water supply from the pumping stations varied from 973 to 1.377 mm in depth and the mean was 1,170 mm. The major factor affecting the annual variations was attributed to the rainfall during the growing seasons.

  • PDF

SWAT 및 HEC-RAS 모형의 수문-수리 연계모델링을 통한 곤지암천 유역의 하천범람 및 토사유출 피해저감 연구 - 2011년 7월 27일 국지성 폭우를 대상으로 - (Study on Damage Reduction by Flood Inundation and the Sediments by SWAT and HEC-RAS Modeling of Flow Dynamics with Watershed Hydrology - For 27 July 2011 Heavy Storm Event at GonjiamCheon Watershed -)

  • 정충길;조형경;유영석;박종윤;김성준
    • 한국농공학회논문집
    • /
    • 제54권2호
    • /
    • pp.87-94
    • /
    • 2012
  • This study is to evaluate flood inundation and to recommend measures of damage reduction on sediment by concentrated torrential rainfall at Gonjiamcheon Watershed (183.4 $km^2$). Firstly, the SWAT (Soil and Water Assessment Tool) was simulated streamflow and sediment at upstream. Then, we produced a map of floodplain boundary by using HEC-RAS (Hydrologic Engineering Centers River Analysis System) at downstream. The SWAT model was calibrated with 2 years (2008~2009) daily streamflow and validated for another years (2010~2011. 7. 31). The SWAT model was simulated with 3 years (2008~2010) by monthly water quality (Sediment) at Gonjiamcheon water quality station. The streamflow and sediment from SWAT model were input as boundary conditions to HEC-RAS. The results of HEC-RAS indicated that mapping of floodplain boundary was Jiwol and Jiwol 2 district. Additionally, inundation area and depth were assessed and applied BMPs scenario for managing the sediment yield.

Groundwater system Investigation of the Cheonggyecheon watershed Area

  • Choi, Doo-Hyung;Yang, Jae-Ha;Jun, Seong-Chun;Lee, Kang-Keun;Kim, Yoon-Young
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.326-329
    • /
    • 2004
  • The groundwater system of the Cheonggyecheon watershed is very complicated because it is influenced by many factors such as pumping out, groundwater leakages into subway stations, civil use of groundwater, and leaking water from water supply and sewage lines. So the characterization and evaluation of the groundwater flow and contaminant transport in the Cheonggyecheon water system is quite a difficult task. The purpose of this study is to analyze the influence on the‘groundwater’ below the Cheonggyecheon watershed by the‘maintenance water’on the Cheonggyecheon stream after the restoration. We have so far collected groundwater quality data, hydrogeologic aquifer parameters, and the amount of leakages into subway stations and its influence on the groundwater system. Results show that groundwater level was influenced by the direction and depth of subway tunnel. This study will continue to monitor groundwater quality, a water level fluctuation relation between rainfall and groundwater recharge for further investigation of the groundwater flow system in the Cheonggyecheon watershed.

  • PDF

Mechanism for Bank Erosion and Local Scouring in Estuary of the Hangang River

  • Lee, Samhee;Han, Hyeongjun;Choo, Jeongho
    • 한국습지학회지
    • /
    • 제16권4호
    • /
    • pp.453-462
    • /
    • 2014
  • The levee and bridge pier in estuary of the Hangang River are exposed in a dangerous condition due to bank erosion and local scouring occurred since the summer season in 2011. At first, it is presumed that the high sandbar formed in river channel of the study area was an important element in the occurrence of bank erosion and local scouring. It can be presumed that the record-breaking depth of freezing due to cold wave for the long term during the winter season between 2010 and 2011 as well as the heavy intensive rainfall of 2011 had a decisive effect on the first damage of A section. The second damage of B section mainly occurred around the bridge pier constructed on the high water channel before it was washed away during the winter season between 2011 and 2012. It is considered that the second damage was caused by ice formation and ice floes.

지리정보시스템을 이용한 장기유출모형의 개발(I) -장기유출의 격자 모형화- (Development of a Cell-based Long-term Hydrologic Model Using Geographic Information System(I) -Cell-based Long-term Hydrologic Modeling-)

  • 최진용;정하우
    • 한국농공학회지
    • /
    • 제39권1호
    • /
    • pp.64-74
    • /
    • 1997
  • A CELTHYM(CEll-based Long-term HYdrologic Model), a pre-processor and a post-processor that can be integrated with geographic information system(GIS) were developed to predict the stream flow from the small agricultural watershed on the daily basis. The CELTHYM calculates the direct runoff from a grid using SCS curve number method and then sum up all of cells with respect to a sub-catchment area belonged to a stream grid and integrated to an outlet. Base flow of a watershed outlet was computed by integrating of the base flow of each stream grid that was averaged the sub-catchment deep-percolation and calculated with the release rate. Two kind of water budget equation were used to compute the water balance in a grid that was classified into not paddy field and paddy field. One of the two equation is a soil water balance equation to account the soil moisture of the upland, forest and excluding paddy field grid. The other is a paddy water balance equation for the paddy field, calculating the ponding depth, the effective rainfall, the deep percolation and the evapotranspiration.

  • PDF

농촌유역 비점오염원처리를 위한 적정 인공습지 규모결정에 관한 연구(지역환경 \circled1) (A Study of Design Conditions for Decision Area of Constructed Wetland to treat Nonpoint Source Pollution from Agricultural Area)

  • 장정렬;박종민;권순국;윤경섭
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.490-499
    • /
    • 2000
  • Several studies on development of water quality treatment systems by wetlands are on going because of their benefits of low construction cost and high efficiency of waste water treatment. The objectives of this study were to review the necessary contents of survey and design factors for constructing constructed wetlands and to examine the required wetland area to treat non-point source pollution through case studies. The measurement of water quality and quantity in precipitation period is needed to analyse the inflow characteristics of the non-point pollution and to determine the amount of design flow. The design inflow for constructing constructed wetland was determined to the total runoff from 30mm of daily rainfall in the AMC(III) condition of the SCS method and is similar 70% of the annual mean runoff. The natural type wetland system with 0.1m of water depth and 5 hours of detention time was applied. From the results of the case studies, 70% of inflow could be treated and 1∼3% of wetland area of the total basin is needed.

  • PDF

대청유역 물수지 분석을 위한 장기 유출모의 (Long Term Runoff Simulation for Water Balance at Daecheong Basin)

  • 이상진;김주철;노준우
    • 한국환경과학회지
    • /
    • 제19권10호
    • /
    • pp.1211-1217
    • /
    • 2010
  • For an accurate rainfall-runoff simulation in the river basin, it is important to consider not only evaluation of runoff model but also accurate runoff component. In this study long-term runoffs were simulated by means of watershed runoff model and the amounts of runoff components such as upstream inflow, surface runoff, return flow and dam release were evaluated based on the concept of water budget. SSARR model was applied to Daecheong basin, the upstream region of Geum river basin, and in turn the monthly runoff discharges of main control points in the basin were analyzed. In addition, for the purpose of providing the basic quantified water resources data the conceptual runoff amounts were estimated with water budget analysis and the reliability of the observations and the monthly runoff characteristics were investigated in depth. The yearly runoff ratios were also estimated and compared with the observations. From the results of the main control points, Yongdam, Hotan, Okcheon and Daecheong, the yearly runoff ratios of those points are consistent well with data reported previously.

국내 수력발전댐 저수지 수질의 시공간 변화 분석 (Analysis Temporal and Spatial Changes of Water Quality in Domestic Hydropower Dam Reservoirs)

  • 박경덕;강동환;조원기;양민준
    • 한국환경과학회지
    • /
    • 제31권5호
    • /
    • pp.373-388
    • /
    • 2022
  • This study analyzed the temporal and spatial characteristics of water quality for five hydropower dam reservoirs in South Korea. Water temperature, pH, dissolved oxygen, and chlorophyll-a (Chl-a) showed high fluctuations in summer and autumn at all reservoirs, indicating the existence of seasonal effects. At all five reservoirs, the concentrations of suspended solids (SS) and total nitrogen (TN) fell under the "slightly bad" category and those of total organic carbon (TOC) fell under the "slightly good" category or higher, according to "the standard for living environment of lake water quality." Variations in the concentration ranges and degrees of change in SS, TN, and TOC among reservoirs were observed, indicating the influences of rainfall, surrounding environments, and seasonal changes. Daecheong and Namgang Dam showed high Chl-a concentrations in summer, indicating that the metabolism of microbial communities, such as algae, was active.

Study on the rainwater recharge model using the groundwater variation and numerical solution of quasi-three dimensional two-phase groundwater flow

  • Tsutsumi, Atsushi;Jinno, Kenji;Mori, Makito;Momii, Kazuro
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2002년도 학술발표회 논문집(II)
    • /
    • pp.1034-1040
    • /
    • 2002
  • A rainwater recharge model, which is combined with the quasi-three dimensional unconfined groundwater flow, is proposed in the present paper. The water budget in the catchments of the planned new campus of Kyushu University is evaluated by the present method that calculates both the surface runoff and groundwater flow simultaneously. The results obtained in the present study reveal that the calculated monthly and annual runoff discharges agree reasonably well with the observed discharge. Combining the rainwater recharge model, the two-phase groundwater flow equation is numerically solved f3r the entire area including the low land where the salt water intrusion is observed. The calculated depth of the salt-fresh interface agrees reasonably well with the observed ones at several cross sections. On the other hand, however, it is found that the calculated water budget remains uncertain because of lack of information on the accurate potential evapotranspiration including rainfall interception. In conclusion, however, it is found that the proposed method is applicable for the areas where the horizontal flow is dominant and the interface is assumed to be sharp.

  • PDF

지표격자해상도 및 우수관망 간소화 수준에 따른 도시홍수 예측 성능검토 (Performance Analysis of Grid Resolution and Storm Sewage Network for Urban Flood Forecasting)

  • 심상보;김형준
    • 한국안전학회지
    • /
    • 제39권1호
    • /
    • pp.70-81
    • /
    • 2024
  • With heavy rainfall due to extreme weather causing increasing damage, the importance of urban flood forecasting continues to grow. To forecast urban flooding accurately and promptly, a sewer network and surface grid with appropriate detail are necessary. However, for urban areas with complex storm sewer networks and terrain structures, high-resolution grids and detailed networks can significantly prolong the analysis. Therefore, determining an appropriate level of network simplification and a suitable surface grid resolution is essential to secure the golden time for urban flood forecasting. In this study, InfoWorks ICM, a software program capable of 1D-2D coupled simulation, was used to examine urban flood forecasting performance for storm sewer networks with various levels of simplification and different surface grid resolutions. The inundation depth, inundation area, and simulation time were analyzed for each simplification level. Based on the analysis, the simulation time was reduced by up to 65% upon simplifying the storm sewer networks and by up to 96% depending on the surface grid resolution; further, the inundation area was overestimated as the grid resolution increased. This study provides insights into optimizing the simplification level and surface grid resolution for storm sewer networks to ensure efficient and accurate urban flood forecasting.