This study collected the latest 30-year (1976~2005) continuous rainfall data hourly recorded at 61 meterological observatories in Korea, and the continuous rainfall data was divided into individual rainfall events. In addition, distribution charts of average rainfall event-depth were created to facilitate the application to the overflow risk-based design of detention storage basin. This study shows that 4 hour is appropriate for SST (storm separation time) to separate individual rainfall events from the continuous rainfall data, and the one-parameter exponential distribution is suitable for the frequency distribution of rainfall event depths for the domestic rainfall data. The analysis of the domestic rainfall data using SST of 4 hour showed that the individual rainfall event was 1380 to 2031 times, the average rainfall event-depth was 19.1 to 32.4mm, and ranged between 0.877 and 0.926. Distribution charts of average rainfall event-depth were created for 4hour and 6 hour of SST, respectively. The inland Gyeongsangbuk-do, Western coastal area and inland of Jeollabuk-do had relatively lower average rainfall event-depth, whereas Southern coastal area, such as Namhae, Yeosu, and Jeju-do had relatively higher average rainfall event-depth.
Rainfall depth is an important meteorological information. Generally, high spatial resolution rainfall data such as road-level rainfall data are more beneficial. However, it is expensive to set up sufficient Automatic Weather Systems to get the road-level rainfall data. In this paper, we propose to use deep learning to recognize rainfall depth from road surveillance videos. To achieve this goal, we collect a new video dataset and propose a procedure to calculate refined rainfall depth from the original meteorological data. We also propose to utilize the differential frame as well as the optical flow image for better recognition of rainfall depth. Under the Temporal Segment Networks framework, the experimental results show that the combination of the video frame and the differential frame is a superior solution for the rainfall depth recognition. The final model is able to achieve high performance in the single-location low sensitivity classification task and reasonable accuracy in the higher sensitivity classification task for both the single-location and the multi-location case.
급속 혼화공정에서 응집제의 동력학적 수화반응 특성을 고려하여 1초 이내의 순간혼합을 제시하고 있으며, 이러한 이론에 근거하여 설치된 Pump Diffusion Mixer(PDM)의 관내 응집제 확산 분포특성을 조사하였다. D=1,200mm 관경에서 압력수 유량비에 따라 응집제 주입지점으로부터 4.5D되는 지점에서 관 단면의 지점별 제타 전위를 측정하여 평가한 결과, 압력수의 유량비가 2%에서는 분사속도가 낮아 관 단면에 응집제가 골고루 분사되지 못하는 것으로 조사되었다. 그러나 압력수 유량비가 4% 이상이 되면 비교적 균등하게 혼합되며, 8%에서는 관 단면 전체에 균등하게 확산 분포되는 것으로 나타났다.
The objective of this study is to investigate whether the daily rainfall depth derived from daily data represents the event rainfall depth derived from hourly data. For analysis, the 85th, 90th, and 95th percentile daily rainfall depths were first computed using daily rainfall data (1986~2015) collected at 63 weather stations. In addition, the storm event was separated by the interevent time definition (IETD) of 6, 12, 18, and 24 hr using hourly rainfall data. Based on the separated storm events, the 85th, 90th, and 95th percentile event rainfall depths were calculated and compared with the using hourly rainfall data with the 85th, 90th, and 95th percentile daily rainfall depths. The event rainfall depths computed using the IETD were greater than the daily rainfall depths. The difference between the event rainfall depth and the daily rainfall depth affects the design and size of the facility for controlling the stormwater. Therefore, the designer and policy decision-maker in designing the stormwater best management practices need to take into account the difference generated by the difference of the used rainfall data and the selected IETD.
본 연구는 한강 유역의 고정된 지점 동시 강우자료의 빈도해석에 의하여 우량-거리비를 산정한 것이다. 우량- 거리비는 한강유역강우의 시공간상관구조를 파악하는데 근거를 제공한다. 우량-거리비는 거리증가에 따라 감소하고 강우 지속시간 증가에 따라 증가하며 재현기간 증가에 따라 약간 감소함을 나타내고 있다. 한강유역의 강우의 특성식을 특성계수와 함께 제시하였다.
강우량은 매우 중요한 기상 정보이다. 일반적으로, 도로 수준과 같은 높은 공간 해상도의 강우량이 더 높은 가치를 가진다. 하지만, 도로 수준의 강우량을 측정하기 위해 충분한 수의 기상 관측 장비를 설치하는 것은 비용 관점에서 비효율적이다. 본 논문에서는 도로의 감시 카메라 영상으로부터 강우량을 인식하기 위해 심층 신경망을 활용하는 방법에 대해 제시한다. 해당 목표를 달성하기 위해, 본 논문에서는 교내 두 지역의 감시 카메라 영상과 강우량 데이터를 수집했으며, 새로운 심층 신경망 구조인 Temporal and Spatial Segment Networks(TSSN)를 제안한다. 본 논문에서 제시한 심층 신경망으로 강우량 인식을 수행한 결과, 프레임 RGB와 두 연속 프레임 RGB 차이를 입력으로 사용했을 때, 높은 성능으로 강우량 인식을 수행할 수 있었다. 또한, 기존의 심층 신경망 모델과 비교했을 때, 본 논문에서 제안하는 TSSN이 가장 높은 성능을 기록함을 확인할 수 있었다.
On account of the increase in water demand and climate change, droughts are in great concern for water resources planning and management. In this study, rainfall characteristics with stationary and non-stationary perspectives were analyzed using Weibull distribution model with 40-year records of annual minimum rainfall depth collected in major cities of Korea. As a result, the non-stationary minimum probable rainfall was expected to decrease, compared with the stationary probable rainfall. The reliability of ${\xi}_1$, a variable reflecting the decrease of the minimum rainfall depth due to climate change, in Wonju, Daegu, and Busan was over 90%, indicating the probability that the minimal rainfall depths in those city decrease is high.
This study was performed to analyse the rainfall and the rainfall-runoff characteristics of a rural watershed. The Sangwha basin($105.9km^{2}$) in the Geum river system was selected for this study. The arithmetic mean method, the Thiessen's weighing method, and the isohyetal method were used to analyse areal rainfall distribution and the Huff's quartile method was used to analyse temporal rainfall distribution. In addition, daily runoff analyses were peformed using the DAWAST and tank model. In the model calibration, the data from June through November, 1999 were used. In the model calibration, the observed runoff depth was 513.7mm and runoff rate was 45.2%, and the DAWAST model simulated runoff depth was 608.6mm and runoff rate was 53.5%, and the tank model runoff depth was 596.5mm and runoff rate was 52.5%, respectively. In the model test, the data from June through November, 2000 were used. In the model test, the observed runoff depth was 1032.3mm and runoff rate was 72.5%, and the DAWAST model simulated runoff depth was 871.6mm and runoff rate was 61.3%, and the tank model runoff depth was 825.4mm and runoff rate was 58%, respectively. The DAWAST and tank model's $R^{2}$ and RMSE were 0.85, 3.61mm, and 0.85, 2.77mm in 1999, and 0.83, 5.73mm, and 0.87, 5.39mm in 2000, respectively. Both models predicted low flow runoff better than flood runoff.
현재 소규모 유역에서의 수공구조물의 설계시 확률강우강도식을 사용하여 강우량을 산정하는 것이 일반적인 적용방법으로 이용되어지고있다. 확률강우의 산정은 그 자체로서 불확실성을 많이 내포하고 있으나 현실적으로 강우의 비선형성을 해석함에 있어 단순화는 배제 할 수 없는 필요사항이다. 따라서 본 연구에서는 확률강우량 산정을 위한 강우강도식의 산정에 있어서 그 비선형성을 잘 모의할 수 있는 방법에 관하여 연구하여 보았다. 연구결과에 의하면 유전자 알고리즘이 시산법이나 비선형계획법의 일종인 Powell 기법에 비하여 더 신뢰성 높은 방법임을 알 수 있었다.
우리나라는 기후변화에 따른 국지성 호우의 증가로 비탈면 붕괴와 같은 재해 가능성이 높아지고 있으며, 이러한 재해를 사전에 예방하기 위해 "건설공사 비탈면 설계기준"에 관련 지침사항을 규정하고 있다. 최근에는 관련 지침 중 기존의 우기시 비탈면 안정성 검토 방법이 강우의 침투를 고려하여 보다 현실적으로 수행할 수 있도록 개정되었다. 본 연구에서는 이러한 동향에 따라 통일분류법에 따른 흙의 종류와 강우강도별 포화깊이를 분석하였다. 분석 결과, 전반적으로 투수계수와 강우강도가 클수록 포화깊이도 비례하여 증가하는 양상을 보였으나 MH, CL에서는 포화영역이 발생하지 않았다. 또한 선행강우를 해석상에 반영한 경우에 포화깊이가 전반적으로 증가하였으며, 강우량이 많은 경우 보다 적은 경우에 포화영역의 증가율이 높은 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.