• Title/Summary/Keyword: Rainfall and Flood

Search Result 1,002, Processing Time 0.028 seconds

Assessment of Flood Probability Based on Temporal Distribution of Forecasted-Rainfall in Cheongmicheon Watershed (예보강우의 시간분포에 따른 청미천 유역의 홍수 확률 평가)

  • Lee, Hyunji;Jun, Sang Min;Hwang, Soon Ho;Choi, Soon-Kun;Park, Jihoon;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.17-27
    • /
    • 2020
  • The objective of this study was to assess the flood probability based on temporal distribution of forecasted-rainfall in Cheongmicheon watershed. In this study, 6-hr rainfalls were disaggregated into hourly rainfall using the Multiplicative Random Cascade (MRC) model, which is a stochastic rainfall time disaggregation model and it was repeated 100 times to make 100 rainfalls for each storm event. The watershed runoff was estimated using the Clark unit hydrograph method with disaggregated rainfall and watershed characteristics. Using the peak discharges of the simulated hydrographs, the probability distribution was determined and parameters were estimated. Using the parameters, the probability density function is shown and the flood probability is calculated by comparing with the design flood of Cheongmicheon watershed. The flood probability results differed for various values of rainfall and rainfall duration. In addition, the flood probability calculated in this study was compared with the actual flood damage in Cheongmicheon watershed (R2 = 0.7). Further, this study results could be used for flood forecasting.

Determination of flood-inducing rainfall and runoff for highly urbanized area based on high-resolution radar-gauge composite rainfall data and flooded area GIS Data

  • Anh, Dao Duc;Kim, Dongkyun;Kim, Soohyun;Park, Jeongha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.157-157
    • /
    • 2019
  • This study derived the Flood-Inducing-Rainfall (FIR) and the Flood-Inducing-Runoff (FIRO) from the radar-gage composite data to be used as the basis of the flood warning initiation for the urban area of Seoul. For this, we derived the rainfall depth-duration relationship for the 261 flood events at 239 watersheds during the years 2010 and 2011 based on the 10-minute 1km-1km radar-gauge composite rainfall field. The relationship was further refined by the discrete ranges of the proportion of the flooded area in the watershed (FP) and the coefficient variation of the rainfall time series (CV). Then, the slope of the straight line that contains all data points in the depth-duration relationship plot was determined as the FIR for the specified range of the FP and the CV. Similar methodology was applied to derive the FIRO, which used the runoff depths that were estimated using the NRCS Curve Number method. We found that FIR and FIRO vary at the range of 37mm/hr-63mm/hr and the range of 10mm/hr-42mm/hr, respectively. The large variability was well explained by the FP and the CV: As the FP increases, FIR and FIRO increased too, suggesting that the greater rainfall causes larger flooded area; as the rainfall CV increases, FIR and FIRO decreased, which suggests that the temporally concentrated rainfall requires less total of rainfall to cause the flood in the area. We verified our result against the 21 flood events that occurred for the period of 2012 through 2015 for the same study area. When the 5 percent of the flooded area was tolerated, the ratio of hit-and-miss of the warning system based on the rainfall was 44.2 percent and 9.5 percent, respectively. The ratio of hit-and-miss of the warning system based on the runoff was 67 percent and 4.7 percent, respectively. Lastly, we showed the importance of considering the radar-gauge composite rainfall data as well as rainfall and runoff temporal variability in flood warning system by comparing our results to the ones based on the gauge-only or radar-only rainfall data and to the one that does not account for the temporal variability.

  • PDF

Estimation of Flash Flood Guidance considering Uncertainty of Rainfall-Runoff Model (강우-유출 모형의 불확실성을 고려한 돌발홍수기준)

  • Lee, Keon-Haeng;Kim, Hung-Soo;Kim, Soo-Jun;Kim, Byung-Sik
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.155-163
    • /
    • 2010
  • The flash flood is characterized as flood leading to damage by heavy rainfall occurred in steep slope and impervious area with short duration. Flash flood occurs when rainfall exceeds Flash Flood Guidance(FFG). So, the accurate estimation of FFG will be helpful in flash flood forecasting and warning system. Say, if we can reduce the uncertainty of rainfall-runoff relationship, FFG can be estimated more accurately. However, since the rainfall-runoff models have their own parameter characteristics, the uncertainty of FFG will depend upon the selection of rainfall-runoff model. This study used four rainfall-runoff models of HEC-HMS model, Storage Function model, SSARR model and TANK model for the estimation of models' uncertainties by using Monte Carlo simulation. Then, we derived the confidence limits of rainfall-runoff relationship by four models on 95%-confidence level.

Simulation and validation of flash flood in the head-water catchments of the Geum river basin

  • Duong, Ngoc Tien;Kim, Jeong Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.138-138
    • /
    • 2021
  • Flash floods are one of the types of natural hazards which has severe consequences. Flash floods cause high mortality, about 5,000 deaths a year worldwide. Flash floods usually occur in mountainous areas in conditions where the soil is highly saturated and also when heavy rainfall happens in a short period of time. The magnitude of a flash flood depends on several natural and human factors, including: rainfall duration and intensity, antecedent soil moisture conditions, land cover, soil type, watershed characteristics, land use. Among these rainfall intensity and antecedent soil moisture, play the most important roles, respectively. Flash Flood Guidance is the amount of rainfall of a given duration over a small stream basin needed to create minor flooding (bank-full) conditions at the outlet of the stream basin. In this study, the Sejong University Rainfall-Runoff model (SURR model) was used to calculate soil moisture along with FFG in order to identify flash flood events for the Geum basin. The division of Geum river basin led to 177 head-water catchments, with an average of 38 km2. the soil moisture of head-water catchments is considered the same as sub-basin. The study has measured the threshold of flash flood generation by GIUH method. Finally, the flash flood events were used for verification of FFG. The results of the validation of seven past independent events of flash flood events are very satisfying.

  • PDF

Computing Probability Flood Runoff for Flood Forecasting & Warning System - Computing Probability Flood Runoff of Hwaong District - (홍수 예.경보 체계 개발을 위한 연구 - 화옹호 유역의 유역 확률홍수량 산정 -)

  • Kim, Sang-Ho;Kim, Han-Joong;Hong, Seong-Gu;Park, Chang-Eoun;Lee, Nam-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.23-31
    • /
    • 2007
  • The objective of the study is to prepare input data for FIA (Flood Inundation Analysis) & FDA (Flood Damage Assessment) through rainfall-runoff simulation by HEC-HMS model. For HwaOng watershed (235.6 $km^{2}$), HEC-HMS was calibrated using 6 storm events. Geospatial data processors, HEC-GeoHMS is used for HEC-HMS basin input data. The parameters of rainfall loss rate and unit hydrograph are optimized from the observed data. HEC-HMS was applied to simulate rainfall-runoff relation to frequency storm at the HwaOng watershed. The results will be used for mitigating and predicting the flood damage after river routing and inundation propagation analysis through various flood scenarios.

Estimation of the Flash Flood Index by the Probable Rainfall Data for Ungauged Catchments (미계측 유역에서의 확률강우에 대한 돌발홍수지수 산정)

  • Kim, Eung-Seok;Choi, Hyun-Il;Jee, Hong-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.81-88
    • /
    • 2010
  • As there occurs recently and frequently a flash flood due to the climate change, a sudden local flood of great volume and short duration caused by heavy or excessive rainfall in a short period of time over a small area, it is increasing that significant danger and loss of life and property in Korea as well as the whole world. Since a flash flood usually occurs as the result of intense rainfall over small steep slope regions and has rapid runoff and debris flow, a flood rises quite quickly with little or no advance warning to prevent flood damage. The aim of this study is to quantify the severity of flash food by estimation of a flash flood index(FFI) from probability rainfall data in a study basin. FFI-D-F(FFI-Duration-Frequency) curves that present the relative severity of flash flood are developed for a study basin to provide regional basic information for the local flood forecasting and warning system particularly in ungauged catchments. It is also expected that FFI-D-F curves can be utilized for evaluation on flash flood mitigation ability and residual flood risk of both existing and planned flood control facilities.

Determine the return period of flash floods by combining flash flood guidance and best fit distribution

  • Duong, Ngoc Tien;Kim, Jeong-Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.362-362
    • /
    • 2020
  • Flash flood is a dangerous weather phenomenon, affecting humans and the economy. The identification, forecast of the changing trend and its characteristics are increasingly concerned. In the world, there have many methods for determining the characteristics of flash floods, in which flash flood guidance (FFG) is a fast, effective and widely used method. The main source of flash floods is short-term rainfall. In this study, we used the data of cross-sectional measurement at the tributaries and the hourly rain data from the automatic rainfall measurement stations in the Geum river basin. Besides, we use a combination of the flash flood guidance and the best fit distribution function to estimate the repeatability of flash floods for head-water catchments in Geum river basin. In which, FFG determines the threshold of rainfall for flash floods. The study has determined the best hourly rainfall distribution function for the Geum river basin and estimated the maximum rainfall of 1hr according to the return periods.

  • PDF

Rainfall Forecasting Using Satellite Information and Integrated Flood Runoff and Inundation Analysis (II): Application and Analysis (위성정보에 의한 강우예측과 홍수유출 및 범람 연계 해석 (II): 적용 및 분석)

  • Choi, Hyuk Joon;Han, Kun Yeun;Kim, Gwangseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.605-612
    • /
    • 2006
  • In this study(II), The developed rainfall forecast model was applied to the NakDong River Basin for the heavy rainfall on 6th to 16th of August in 2002. The results demonstrated that the rainfall forecasts of 3 hours lead time showed good agreement with observed data. The inundation aspect of simulation depends on actual levee failure in the same basin. Rainfall forecasts were used for flood amount computation in the target watershed. Also the flood amount in the target watershed was used on boundary condition for flood inundation simulation in a protected lowland and a river. The results of simulation are consistent with actuality inundation traces and flood level data of the target watershed. This study provides practical applicability of satellite data in rainfall forecast of extreme events such as heavy rainfall or typhoon. Also this study presented an advanced integrated model of rainfall, runoff, and inundation analysis which can be applicable for flood disaster prevention and mitigation.

Computation of Criterion Rainfall for Urban Flood by Logistic Regression (로지스틱 회귀에 의한 도시 침수발생의 한계강우량 산정)

  • Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.713-723
    • /
    • 2019
  • Due to the climate change and various rainfall pattern, it is difficult to estimate a rainfall criterion which cause inundation for urban drainage districts. It is necessary to examine the result of inundation analysis by considering the detailed topography of the watershed, drainage system, and various rainfall scenarios. In this study, various rainfall scenarios were considered with the probabilistic rainfall and Huff's time distribution method in order to identify the rainfall characteristics affecting the inundation of the Hyoja drainage basin. Flood analysis was performed with SWMM and two-dimensional inundation analysis model and the parameters of SWMM were optimized with flood trace map and GA (Genetic Algorithm). By linking SWMM and two-dimensional flood analysis model, the fitness ratio between the existing flood trace and simulated inundation map turned out to be 73.6 %. The occurrence of inundation according to each rainfall scenario was identified, and the rainfall criterion could be estimated through the logistic regression method. By reflecting the results of one/two dimensional flood analysis, and AWS/ASOS data during 2010~2018, the rainfall criteria for inundation occurrence were estimated as 72.04 mm, 146.83 mm, 203.06 mm in 1, 2 and 3 hr of rainfall duration repectively. The rainfall criterion could be re-estimated through input of continuously observed rainfall data. The methodology presented in this study is expected to provide a quantitative rainfall criterion for urban drainage area, and the basic data for flood warning and evacuation plan.

Real-time Flood Forecasting Model Based on the Condition of Soil Moisture in the Watershed (유역토양수분 추적에 의한 실시간 홍수예측모형)

  • 김태철;박승기;문종필
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.81-89
    • /
    • 1995
  • One of the most difficult problem to estimate the flood inflow is how to understand the effective rainfall. The effective rainfall is absolutely influenced by the condition of soil moisture in the watershed just before the storm event. DAWAST model developed to simulate the daily streamflow considering the meteologic and geographic characteristics in the Korean watersheds was applied to understand the soil moisture and estimate the effective rainfall rather accurately through the daily water balance in the watershed. From this soil moisture and effective rainfall, concentration time, dimensionless hydrograph, and addition of baseflow, the rainfall-runoff model for flood flow was developed by converting the concept of long-term runoff into short-term runoff. And, real-time flood forecasting model was also developed to forecast the flood-inflow hydrograph to the river and reservoir, and called RETFLO model. According to the model verification, RETFLO model can be practically applied to the medium and small river and reservoir to forecast the flood hydrograph with peak discharge, peak time, and volume. Consequently, flood forecasting and warning system in the river and the reservoir can be greatly improved by using personal computer.

  • PDF