• Title/Summary/Keyword: Rainfall Structure

Search Result 272, Processing Time 0.033 seconds

A Study on the Characteristics of Heavy Rainfalls in Chungcheong Province using Radar Reflectivity (레이더 자료를 이용한 충청지역 집중호우 사례 특성 분석)

  • Song, Byung-Hyun;Nam, Jae-Cheol;Nam, Kyung-Yub;Choi, Ji-Hye
    • Atmosphere
    • /
    • v.14 no.1
    • /
    • pp.24-43
    • /
    • 2004
  • This paper describes the detailed characteristics of heavy rainfall events occurred in Chungcheong province on 15 and 16 April and from 6 to 8 August 2002 based on the analysis of raingauge rainfall rate and radar reflectivity from the METRI's X-band Weather Radar located in Cheongju. A synoptic analysis of the case is carried out, first, and then the analysis is devoted to seeing how the radar observes the case and how much information we obtain. The highly resolved radar reflectivity of horizontal and vertical resolutions of 1 km and 500 m, respectively shows a three-dimensional structure of the precipitating system, in a similar sequence with the ground rainfall rate. The radar echo classification algorithm for convective/stratiform cloud is applied. In the convectively-classified area, the radar reflectivity pattern shows a fair agreement with that of the surface rainfall rate. This kind of classification using radar reflectivity is considered to be useful for the precipitation forecasting. Another noteworthy aspect of the case includes the effect of topography on the precipitating system, following the analysis of the surface rainfall rate, topography, and precipitating system. The results from this case study offer a unique opportunity of the usefulness of weather radar for better understanding of structural and variable characteristics of flash flood-producing heavy rainfall events, in particular for their improved forecasting.

Development of Horizontal Displacement Sensor for Rainfall-simulated Centrifugal Model Test (강우재현 원심모형실험에 적용하기 위한 수평변위 계측장치의 개발)

  • Lee, Chungwon;Park, Sungyong;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.71-77
    • /
    • 2014
  • Heavy rainfall induces many disasters including slope failure and infrastructure collapse. In this point of view, rainfall-simulated centrifugal model test can be a reasonable tool to evaluate the stability of geotechnical structure. In order to obtain the displacements of a model in centrifugal model test, in general, LVDT and laser displacement sensor are used. However, when the rainfall is simulated, the LVDT has the problem of excessive infiltration into the model ground, and the laser displacement sensor provides the measuring result with inaccuracy due to the dispersion of the laser radiation. Hence, in this study, horizontal displacement sensor for rainfall-simulated centrifugal model test was developed. This sensor produced with a thin elastic steel plate and gave the accurate relationship between the displacement and the strain.

A Study on Estimation of Target Precipitation in Seoul using AWS minutely Rainfall Data (AWS 분(分) 단위 강우자료를 이용한 서울지역 특성에 따른 행정자치 구(區)별 목표강우량 산정에 관한 연구)

  • Kim, Min-seoka;Son, Hong-mina;Moon, Young-il
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • It is very important to decide probability precipitation that is used as hydraulic structure design and target rainfall for urban disaster prevention. Especially, National Emergency Management Agency (NAMA) announced target rainfall from probability precipitation in korea on city and district level. It make use to performance evaluation of disaster prevention and planning of development for disasters prevention capacity target. In this study was calculated target rainfall that is duration 1~3 hour based unit of gu (borough) by point and regional frequency analysis using rainfall data of Surface Synoptic Stations (SSS) and Automatic Weather Stations (AWS). The result of this study can utilized as a reference to related business such as disaster capability assessment and achievement of prevention capacity target against disasters. And it also will be contribute to establishment of prevention capacity target against disasters.

Application of EDA Techniques for Estimating Rainfall Quantiles (확률강우량 산정을 위한 EDA 기법의 적용)

  • Park, Hyunkeun;Oh, Sejeong;Yoo, Chulsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.319-328
    • /
    • 2009
  • This study quantified the data by applying the EDA techniques considering the data structure, and the results were then used for the frequency analysis. Although traditional methods based on the method of moments provide very sensitive statistics to the extreme values, the EDA techniques have an advantage of providing very stable statistics with their small variation. For the application of the EDA techniques to the frequency analysis, it is necessary to normalization transform and inverse-transform to conserve the skewness of the raw data. That is, it is necessary to transform the raw data to make the data follow the normal distribution, to estimate the statistics by applying the EDA techniques, and then finally to inverse-transform the statistics of transformed data. These statistics decided are then applied for the frequency analysis with a given probability density function. This study analyzed the annual maxima one hour rainfall data at Seoul and Pohang stations. As a result, it was found that more stable rainfall quantiles, which were also less sensitive to extreme values, could be estimated by applying the EDA techniques. This methodology may be effectively used for the frequency analysis of rainfall at stations with especially high annual variations of rainfall due to climate change, etc.

FACTORS OF GROUNDWATER FLUCTUATION IN SHIN KORI NUCLEAR POWER PLANTS IN KOREA

  • Hyun, Seung Gyu;Woo, Nam C.;Kim, Kue-Young;Lee, Hyun-A
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.539-552
    • /
    • 2013
  • To establish an aging management plan considering seawater influx and changes in groundwater within nuclear power plant sites, the characteristics of groundwater flow must be understood. This study investigated the characteristics of groundwater flow within the site and analyzed groundwater level recorded by monitoring wells to evaluate groundwater flow characteristics and elements that affected these characteristics for supplying the information to conduct the appropriate aging management for ensuring the safety of the safety-related structures in Shin Kori Unit 1 and 2. The increase in groundwater level during the wet season results from high sea-level conditions and the large amount of precipitation. As a result of the analysis of groundwater distribution and change characteristics, the site could be divided into a rainfall-affected area and a tide-affected area. First, the rainfall-affected area can further be divided into areas that are affected simultaneously by excavation, backfill, and a permanent dewatering system. Secondly, areas that are not affected by excavation, or the dewatering system, or by structure arrangement and excavation. Analysis of the spectrum for wells affected by tides resulted in confirmation of the M2 component (12.421 hr) and S2 component (12.000 hr) of the semidiurnal tides, and the O1 component (25.819 hr) of the diurnal tides. In the cross-correlation results regarding tides and groundwater levels, the lag time occurred diversely within 1-3 hours by the effect of the well location from sea, the distribution of the backfill material with depth, and the concrete structure.

Quantitative Flood Forecasting Using Remotely-Sensed Data and Neural Networks

  • Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.43-50
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict streamflow and flash floods. Previously, neural networks were used to develop a Quantitative Precipitation Forecasting (QPF) model that highly improved forecasting skill at specific locations in Pennsylvania, using both Numerical Weather Prediction (NWP) output and rainfall and radiosonde data. The objective of this study was to improve an existing artificial neural network model and incorporate the evolving structure and frequency of intense weather systems in the mid-Atlantic region of the United States for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as life time, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. The new Quantitative Flood Forecasting (QFF) model was applied to predict streamflow peaks with lead-times of 18 and 24 hours over a five year period in 4 watersheds on the leeward side of the Appalachian mountains in the mid-Atlantic region. Threat scores consistently above .6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 4% and up to 6% were attained for the 24 hour lead-time forecasts. This work demonstrates that multisensor data cast into an expert information system such as neural networks, if built upon scientific understanding of regional hydrometeorology, can lead to significant gains in the forecast skill of extreme rainfall and associated floods. In particular, this study validates our hypothesis that accurate and extended flood forecast lead-times can be attained by taking into consideration the synoptic evolution of atmospheric conditions extracted from the analysis of large-area remotely sensed imagery While physically-based numerical weather prediction and river routing models cannot accurately depict complex natural non-linear processes, and thus have difficulty in simulating extreme events such as heavy rainfall and floods, data-driven approaches should be viewed as a strong alternative in operational hydrology. This is especially more pertinent at a time when the diversity of sensors in satellites and ground-based operational weather monitoring systems provide large volumes of data on a real-time basis.

  • PDF

Decision of G/R Ratio for the Correction of Mean-Field Bias of Radar Rainfall and Linear Regression Problem (레이더 강우의 평균보정을 위한 G/R 비의 결정과 선형 회귀 문제)

  • Yoo, Chulsang;Park, Cheolsoon;Yoon, Jungsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.393-403
    • /
    • 2011
  • This study theoretically reviewed the empirical G/R ratio by considering three regression and trend lines; the general linear regression curve, linear regression curve passing the origin, and the line passing the origin and the mass center of observed data. This review included the problem of choosing the independent variable and that of considering the zero measurements. This review result was also applied to the Typhoon Maemi in 2003 for their evaluation. Additionally, those regression and trend lines were compared using the RMSE between the corrected radar rainfall and observed rain gauge rainfall to select the most appropriate G/R ratio. Summarizing the results is as follows. First, the results of selecting the rain gauge rainfall as the independent variable were found better than the opposite case. Second, the effect of zero measurements varies depending on the structure of radar and rain gauge rainfall. Finally, the results from the comparison of three regression and trend lines shows that the slope of the regression line passing the origin with its independent variable of rain gauge rainfall would be used most appropriately for the G/R ratio, especially when the corrected radar rainfall is used for the flood analysis. The effect of zero measurements in this case was found not so significant.

A Bayesian Approach to Gumbel Mixture Distribution for the Estimation of Parameter and its use to the Rainfall Frequency Analysis (Bayesian 기법을 이용한 혼합 Gumbel 분포 매개변수 추정 및 강우빈도해석 기법 개발)

  • Choi, Hong-Geun;Uranchimeg, Sumiya;Kim, Yong-Tak;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.249-259
    • /
    • 2018
  • More than half of annual rainfall occurs in summer season in Korea due to its climate condition and geographical location. A frequency analysis is mostly adopted for designing hydraulic structure under the such concentrated rainfall condition. Among the various distributions, univariate Gumbel distribution has been routinely used for rainfall frequency analysis in Korea. However, the distributional changes in extreme rainfall have been globally observed including Korea. More specifically, the univariate Gumbel distribution based rainfall frequency analysis is often fail to describe multimodal behaviors which are mainly influenced by distinct climate conditions during the wet season. In this context, we purposed a Gumbel mixture distribution based rainfall frequency analysis with a Bayesian framework, and further the results were compared to that of the univariate. It was found that the proposed model showed better performance in describing underlying distributions, leading to the lower Bayesian information criterion (BIC) values. The mixed Gumbel distribution was more robust for describing the upper tail of the distribution which playes a crucial role in estimating more reliable estimates of design rainfall uncertainty occurred by peak of upper tail than single Gumbel distribution. Therefore, it can be concluded that the mixed Gumbel distribution is more compatible for extreme frequency analysis rainfall data with two or more peaks on its distribution.

Throughfall, Stemflow and Interception Loss of the Natural Old-growth Deciduous and Planted Young Coniferous in Gwangneung and the Rehabilitated Young Mixed Forest in Yangju, Gyeonggido(I) - with a Special Reference on the Results of Measurement - (광릉(光陵) 활엽수(闊葉樹) 천연노령림(天然老齡林)과 침엽수(針葉樹) 인공유령림(人工幼齡林) 그리고 양주(楊洲) 사방지(砂防地) 혼효유령림(混淆幼齡林)의 수관통과우량(樹冠通過雨量), 수간유하량(樹幹流下量) 그리고 차단손실량(遮斷損失量)에 관하여(I) - 실험적(實驗的) 측정결과(測定結果)를 중심(中心)으로 -)

  • Kim, Kyongha;Jun, Jaehong;Yoo, Jaeyun;Jeong, Yongho
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.488-495
    • /
    • 2005
  • This study was conducted to understand the influences of forest structure on throughfall, stemflow and interception loss. The study plots included the natural old-growth deciduous, Pinus koraiensis and Abies holophylla forests in Gwangneung and the rehabilitated young mixed forest in Yangju, Gyeonggido. The Pinus koraiensis and Abies hotophylla had been planted in 1976. The rehabilitated young mixed forest had been established to control erosion in 1974. Total and net rainfall were monitored from March, 2003 to October, 2004. Tipping bucket rain gauge recorded total rainfall. Throughfall and stemflow were measured by custom-made tipping bucket and CR10X data logger at each $10m{\times}10m$ plots at intervals of 30 minutes. Interception loss in the Pinus koraiensis plot were most as 37.2% of total rainfall and least as 22.6% in the rehabilitated young mixed forest. Stemflow in the rehabilitated young mixed forest was 10.7% of total rainfall and stemflow in the Pinus koraiensis plot was 2.4%. The average throughfall ratio ranged from 66% to 77% depending on the canopy coverage. The relationship of stemflow and total rainfall represented in a linear regression equation though the variation of data was large. The ratio of stemflow-conversion was 2% of total rainfall in the Pinus koraiensis plot and 12% in the rehabilitated young mixed forest, respectively. The stem storage of the natural old-growth deciduous was the largest of 0.21 mm whereas that of the Pinus koraiensis plot was the least of 0.003 mm. A deciduous forest produced stemflow more than a coniferous forest due to a smooth bark and steeply angled branches. Interception loss of all study plots increased linearly as total rainfall increased. The distribution of interception loss data related in total rainfall became wider in a deciduous forest than a coniferous. It resulted from seasonality of leaf area index in a deciduous forest. As considered above results, it was confirmed that there were great differences of throughfall, stemflow and interception loss depending on forest stand structures. The simulation model for predicting interception loss must have parameters such as forest stand characteristics and LAI in order to describe the influence of forest structure on interception loss.

Estimation of Design Flood Considering Time Distribution of Rainfall (강우 시간분포를 고려한 설계홍수량산정)

  • Park, Jae-Hyun;Ahn, Sang-Jin;Hahm, Chang-Hahk;Choi, Min-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1191-1195
    • /
    • 2006
  • Now days, heavy storm occur to be continue. It is hard to use before frequency based on flood discharge for decision that design water pocket structure. We need to estimation of frequency based on flood discharge on the important basin likely city or basin that damage caused by flood recurrence. In this paper flood discharge calculated by Clark watershed method and SCS synthetic unit hydrograph method about upside during each minute of among time distribution method of rainfall, Huff method choosing Bocheong Stream basin that is representative basin of International Hydrologic Project (IHP) about time distribution of rainfall that exert big effect at flood discharge estimate to research target basin because of and the result is as following. Relation between probability flood discharge that is calculated through frequency analysis about flood discharge data and rainfall - runoff that is calculated through outward flow model was assumed about $48.1{\sim}95.9%$ in the case of $55.8{\sim}104.0%$, SCS synthetic unit hydrograph method in case of Clark watershed method, and Clark watershed method has big value overly in case of than SCS synthetic unit hydrograph method in case of basin that see, but branch of except appeared little more similarly with frequency flood discharge that calculate using survey data. In the case of Critical duration, could know that change is big area of basin is decrescent. When decide time distribution type of rainfall, apply upside during most Huff 1-ST because heavy rain phenomenon of upsides appears by the most things during result 1-ST about observation recording of target area about Huff method to be method to use most in business, but maximum value of peak flood discharge appeared on Huff 3-RD too in the case of upside, SCS synthetic unit hydrograph method during Huff 3-RD incidental of this research and case of Clark watershed method. That is, in the case of Huff method, latitude is decide that it is decision method of reasonable design floods that calculate applying during all $1-ST{\sim}4-TH$.

  • PDF