• Title/Summary/Keyword: Rainfall Runoff

Search Result 1,758, Processing Time 0.029 seconds

Characteristics of Andong Dam Inflow during Non-rainfall Season

  • Park, Gey-Hwan;Park, Ki-Bum;Chang, In-Soo
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.845-851
    • /
    • 2018
  • In this study, the runoff characteristics of the non-rainfall period were examined using daily rainfall data from 1977 to 2017 and the data of runoff into the dam. Results showed that, the mean runoff decreases with longer non-rainfall periods in the Andong dam basin. The correlation coefficient between non-rainfall days and average runoff reaches 0.85. The results of the analysis of the runoff characteristics during the non-rainfall period, based on the preceding rainfall of Andong dam are as follows. The runoff characteristics of the entire non-rainfall period, shows that, for a rainfall of 1.0 mm or less, the runoff height was larger than the rainfall size and the base runoff larger. The correlation between the antecedent rainfall and runoff height was reached as high as 0.9864 in the 30 ~ 50 mm interval of the antecedent rainfall period, and this is the interval where the linearity of rainfall and runoff was at its maximum in the Andong dam basin. The correlation between the antecedent rainfall and the runoff height reached 0.92 for rainfalls of 100.0 mm. However, for rainfalls of 100.0 mm greater, the correlation between the antecedent rainfall and runoff height during the rainfall period was 0.64, which is relatively small. In this study, we investigated the runoff characteristics of the rainfall period in the Andong dam watershed. As a result, it was confirmed that the mean runoff decreased with rainfall duration. The linearity was found to be weak for rainfall events greater than 100.0 mm. The results of this study can be used as data for water balance analysis and for formulating a water supply plan to establish water resource management of Andong dam.

Monitoring of Non-point Source Pollutants Generated by a Flower Farm

  • Choi, Byoungwoo;Kang, Meea
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.463-471
    • /
    • 2014
  • This paper considers the effect of rainfall on non-point source (NPS) pollutant loads. The impact of runoff on the occurrence of NPS pollutants was found to be influenced by rainfall amount, rainfall intensity, and the number of antecedent dry days (ADD), both independently and in combination. The close correlation ($R^2$ = 0.9920) between rainfall and runoff amounts was demonstrated at the study site (a flower farm) over the period between January 2011 and December 2013. The relationships among pollutant levels, runoff, and rainfall was not satisfactory results except for the Biochemical Oxygen Demand ($BOD_5$). The correlation coefficients between $BOD_5$, and both runoff and rainfall, were greater than 0.92. However, the relationships of other pollutants, such as Suspended Solid (SS), Chemical Oxygen Demand ($COD_{Mn}$), Total Nitrogen (TN), and Total Phosphorus (TP), with runoff and rainfall had correlation coefficients of less than 0.70. The roles of rainfall was different from rainfall categories on the occurrence of runoff. Instantaneous rainfall intensity was a principle factor on the occurrence of runoff following light rainfall events (total ${\leq}30mm$). For rainfall of intermediate intensity (total precipitation 31-50 mm), the combined effect of both average rainfall intensity and ADD was found to influence runoff generation. We conclude that the control of NPS pollutants with the reflection of the climate change that makes the remarkable effect of amounts and forms on the rainfall and runoff.

Application of a Distribution Rainfall-Runoff Model on the Nakdong River Basin

  • Kim, Gwang-Seob;Sun, Mingdong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.976-976
    • /
    • 2012
  • The applicability of a distributed rainfall-runoff model for large river basin flood forecasts is analyzed by applying the model to the Nakdong River basin. The spatially explicit hydrologic model was constructed and calibrated by the several storm events. The assimilation of the large scale Nakdong River basin were conducted by calibrating the sub-basin channel outflow, dam discharge in the basin rainfall-runoff model. The applicability of automatic and semi-automatic calibration methods was analyzed for real time calibrations. Further an ensemble distributed rainfall runoff model has been developed to measure the runoff hydrograph generated for any temporally-spatially varied rainfall events, also the runoff of basin can be forecast at any location as well. The results of distributed rainfall-runoff model are very useful for flood managements on the large scale basins. That offer facile, realistic management method for the avoiding the potential flooding impacts and provide a reference for the construct and developing of flood control facilities.

  • PDF

Computing the Half-Month Rainfall-Runoff Erosivity Factor for RUSLE (RUSLE을 위한 반월 주기 강우가식성인자 산정)

  • 강문성;박승우;임상준;김학관
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.29-40
    • /
    • 2003
  • The objective of the paper is to compute the half-month rainfall-runoff erosivity factor for revised universal soil loss equation (RUSLE). RUSLE is being used to develop soil conservation programs and identify optimum management practices. Rainfall-runoff erosivity factor (R) is a key input parameter to RUSLE. Rainfall-runoff erosivity factor has been calculated for twenty six stations from the nationwide rainfall data from 1973 to 2002 in south Korea. The average annual Rainfall-runoff erosivity factor at the analyzed stations Is between 3,130 and 10,476 (MJ/ha)ㆍ(mm/h). According to the computation of the half-month Rainfall-runoff erosivity factor for locations, 66-85% of the average annual R value has occurred during the summer months, June-August. The half-month R values from this study can be used for RUSLE.

Estimation of optimal runoff hydrograph using radar rainfall ensemble and blending technique of rainfall-runoff models (레이더 강우 앙상블과 유출 블랜딩 기법을 이용한 최적 유출 수문곡선 산정)

  • Lee, Myungjin;Kang, Narae;Kim, Jongsung;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.221-233
    • /
    • 2018
  • Recently, the flood damage by the localized heavy rainfall and typhoon have been frequently occurred due to the climate change. Accurate rainfall forecasting and flood runoff estimates are needed to reduce such damages. However, the uncertainties are involved in guage rainfall, radar rainfall, and the estimated runoff hydrograph from rainfall-runoff models. Therefore, the purpose of this study is to identify the uncertainty of rainfall by generating a probabilistic radar rainfall ensemble and confirm the uncertainties of hydrological models through the analysis of the simulated runoffs from the models. The blending technique is used to estimate a single integrated or an optimal runoff hydrograph by the simulated runoffs from multi rainfall-runoff models. The radar ensemble is underestimated due to the influence of rainfall intensity and topography and the uncertainty of the rainfall ensemble is large. From the study, it will be helpful to estimate and predict the accurate runoff to prepare for the disaster caused by heavy rainfall.

Assessment of Feasibility of Rainfall-Runoff Simulation Using SRTM-DEM Based on SWMM (SWMM 기반 SRTM-DEM을 활용한 강우-유출 모의 가능성 평가)

  • Mirae Kim;Junsuk Kang
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.443-452
    • /
    • 2024
  • The recent increase in impermeable surfaces due to urbanization and the occurrence of concentrated heavy rainfall events caused by climate change have led to an increase in urban flooding. To predict and prepare for flood damage, a convenient and highly accurate simulation of rainfall-runoff based on geospatial information is essential. In this study, the storm water management model (SWMM) was applied to simulate rainfall runoff in the Bangbae-dong area of Seoul, using two sets of topographical data: The conventional topographic digital elevation model (TOPO-DEM) and the proposed shuttle radar topography mission (SRTM)-DEM. To evaluate the applicability of the SRTM-DEM for rainfall-runoff modeling, two DEMs were constructed for the study area, and rainfall-runoff simulations were performed. The construction of the terrain data for the study area generally reflected the topographical characteristics of the area. Quantitative evaluation of the rainfall-runoff simulation results indicated that the outcomes were similar to those obtained using the existing TOPO-DEM. Based on the results of this study, we propose the use of SRTM-DEM, a more convenient terrain data, in rainfall-runoff studies, rather than asserting the superiority of a specific geospatial data.

Rainfall-Runoff Analysis of River Basin Using Spatial Data (지형공간 특성자료를 이용한 하천유역의 강우-유출해석)

  • 안승섭;이증석;도준현
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.949-955
    • /
    • 2003
  • The subject basin of the research was the basin of Yeongcheon Dam located in the upper reaches of the Kumho River. The parameters of the model were derived from the results of abstracting topological properties out of rainfall-runoff observation data about heavy rains and Digital Elevation Modeling(DEM) materials. This research aimed at suggesting the applicability of the CELLMOD Model, a distribution-type model, in interpreting runoff based on the topological properties of a river basin, by carrying out runoff interpretation far heavy rains using the model. To examine the applicability of the model, the calculated peaking characteristics in the hydrograph was analyzed in comparison with observed values and interpretation results by the Clark Model. According to the result of analysis using the CELLMOD Model proposed in the present research for interpreting the rainfall-runoff process, the model reduced the physical uncertainty in the rainfall-runoff process, and consequently, generated improved results in forecasting river runoff. Therefore it was concluded that the algorithm is appropriate for interpreting rainfall-runoff in river basins. However, to enhance accuracy in interpreting rainfall-runoff it is necessary to supplement heavy rain patterns in subject basins and to subdivide a basin into minor basins for analysis. In addition, it is necessary to apply the model to basins that have sufficient observation data, and to identify the correlation between model parameters and the basin characteristics(channel characteristics).

Rainfall-Runoff Analysis of a Rural Watershed (농촌유역의 강우-유출분석)

  • Kim, Ji-Yong;Park, Ki-Jung;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.93-98
    • /
    • 2001
  • This study was performed to analyse the rainfall and the rainfall-runoff characteristics of a rural watershed. The Sangwha basin($105.9km^{2}$) in the Geum river system was selected for this study. The arithmetic mean method, the Thiessen's weighing method, and the isohyetal method were used to analyse areal rainfall distribution and the Huff's quartile method was used to analyse temporal rainfall distribution. In addition, daily runoff analyses were peformed using the DAWAST and tank model. In the model calibration, the data from June through November, 1999 were used. In the model calibration, the observed runoff depth was 513.7mm and runoff rate was 45.2%, and the DAWAST model simulated runoff depth was 608.6mm and runoff rate was 53.5%, and the tank model runoff depth was 596.5mm and runoff rate was 52.5%, respectively. In the model test, the data from June through November, 2000 were used. In the model test, the observed runoff depth was 1032.3mm and runoff rate was 72.5%, and the DAWAST model simulated runoff depth was 871.6mm and runoff rate was 61.3%, and the tank model runoff depth was 825.4mm and runoff rate was 58%, respectively. The DAWAST and tank model's $R^{2}$ and RMSE were 0.85, 3.61mm, and 0.85, 2.77mm in 1999, and 0.83, 5.73mm, and 0.87, 5.39mm in 2000, respectively. Both models predicted low flow runoff better than flood runoff.

  • PDF

Comparison of NPS Pollution Characteristics between Snowmelt and Rainfall Runoff from a Highland Agricultural Watershed (고랭지 밭 유역에서 융설과 강우유출로 발생하는 비점오염원의 특성 비교)

  • Choi, Yong-Hun;Won, Chul-Hee;Park, Woon-Ji;Shin, Min-Hwan;Shin, Jae-Young;Lee, Su-In;Choi, Joong-Dae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.523-530
    • /
    • 2012
  • Runoff, NPS pollution load and flow-weighted mean concentration (FWMC) occurred by snowmelt and rainfall runoff were compared by a variance analysis. Snowmelt runoff ranged between 1,449 and $19,921m^3$. The peak snowmelt runoff was similar to the runoff that occurred by about 40mm/day rainfall. And average snowmelt runoff was not significantly different from the runoff that occurred by 25.5 mm/day rainfall. Average values of SS loads and FWMCs were 5,438 kg/day and 954.9 mg/L, respectively. SS loads and FWMCs were in the similar range with those that occurred by 39.0 mm/day and 53.0 mm/day rainfall, respectively. Daily SS and COD loads and FWMCs occurred by snowmelt and rainfall were analyzed not to be significantly different. Overall assessment led that the NPS pollution loads by snowmelt runoff had a similar characteristics with the loads by about 40 mm/day rainfall runoff. It was recommended that the agricultural fields in snowy region needs to managed not only for rainfall runoff but also snowmelt runoff for an effective water quality management.

Assessing Unit Hydrograph Parameters and Peak Runoff Responses from Storm Rainfall Events: A Case Study in Hancheon Basin of Jeju Island

  • Kar, Kanak Kanti;Yang, Sung-Kee;Lee, Jun-Ho
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.437-447
    • /
    • 2015
  • Estimation of runoff peak is needed to assess water availability, in order to support the multifaceted water uses and functions, hence to underscore the modalities for efficient water utilization. The magnitude of storm rainfall acts as a primary input for basin level runoff computation. The rainfall-runoff linkage plays a pivotal role in water resource system management and feasibility level planning for resource distribution. Considering this importance, a case study has been carried out in the Hancheon basin of Jeju Island where distinctive hydrological characteristics are investigated for continuous storm rainfall and high permeable geological features. The study aims to estimate unit hydrograph parameters, peak runoff and peak time of storm rainfalls based on Clark unit hydrograph method. For analyzing observed runoff, five storm rainfall events were selected randomly from recent years' rainfall and HEC-hydrologic modeling system (HMS) model was used for rainfall-runoff data processing. The simulation results showed that the peak runoff varies from 164 to 548 m3/sec and peak time (onset) varies from 8 to 27 hours. A comprehensive relationship between Clark unit hydrograph parameters (time of concentration and storage coefficient) has also been derived in this study. The optimized values of the two parameters were verified by the analysis of variance (ANOVA) and runoff comparison performance were analyzed by root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) estimation. After statistical analysis of the Clark parameters significance level was found in 5% and runoff performances were found as 3.97 RMSE and 0.99 NSE, respectively. The calibration and validation results indicated strong coherence of unit hydrograph model responses to the actual situation of historical storm runoff events.