• Title/Summary/Keyword: Rainfall Rate

Search Result 771, Processing Time 0.025 seconds

An Analysis of First Flush Phenomenon of Non-point Source Pollution during Rainfall-Runoff Events from Impervious Area (불투수성 지역의 강우유출수에 대한 비점오염물질의 초기유출현상 분석)

  • Ahn, Tae-Ung;Bum, Bong-Su;Kim, Tae-Hoon;Choi, I-Song;Oh, Jong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.643-653
    • /
    • 2013
  • In this study, trend analysis was performed by various runoff analysis method of Non-point Pollution Source(NPS) at the impervious area. The characteristics of rainfall at impervious area appeared to be influenced by rainfall strength and it appeared that first flush phenomenon occurs often if rainfall strength acts largely. It is judged that the measure is required to be prepared against that now that concentration difference of non-point pollution source appeared to be big by precedent number of days of no rainfall. As the result of calculating Decrease Rate (DR) by first flush of non-point pollution source, it is judged that it is important to prepare the measure against the pollutants about initial rain and it is necessary to calculate the capacity of non-point pollution source processing facilities regarding that now that the non-point pollution source integrated at impervious area showed the characteristics that are flowed out in high concentration by initial rain in case of non-rainfall considering the characteristics of non-point pollution source at impervious area. When taking 50% of non-point pollution source as the standard for decrease rate that was evaluated previously, it appeared as 15~60 min in case of TSS and it appeared as 30~90 min in case of organic compound, but the characteristic whose decrease rate is below 50% also appeared even till rainfall-runoff ends. Based on that, it is judged that it could be used as the reference when designing the structural BMPs facilities later.

Analysis of Runoff Reduction Effect and Rainfall Intensity-Duration Time of Permeable Block Facility (투수블록시설의 유출저감효과 분석 및 강우강도-지속시간 관계 분석)

  • Han, Sangyun;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Non-point pollution adversely affects the water system and its influence is increasing. In order to manage such nonpoint source pollution, the government has conducted studies on LID (Low Impact Development) facilities and various efficiency evaluations. In this study, the actual installed permeable block facility among the various LID facilities was analyzed the effluent reduction rate, the residual rainfall analysis, the runoff duration time and the reduction rate of the maximum inflow and outflow for the rainfall runoff control and the results were compared the other facilities. The analysis results show that the reduction efficiency is high in order of impermeable block, filter type permeable block, and clearance type permeable block, and the graph showing the relationship between the rainfall intensity and the runoff duration time is presented. This graph can be helpful in the design of facilities such as the facility capacity selection according to the reproduction period of the permeable block facility similar to this.

Response of Soil CO2 Fluxes to Seasonal Variations in a Grassplot (잔디밭에서 계절 변화에 따른 이산화탄소 플럭스 변동)

  • Kim, Park Sa;Kwon, Byung Hyuk;Kang, Dong Hwan
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1131-1142
    • /
    • 2014
  • In this study, the variations of the carbon dioxide fluxes were investigated with soil temperatures in the grassplot and seasonal variations of carbon dioxide concentrations and fluxes were analysed. Soil temperatures, carbon dioxide concentrations and fluxes were measured on the grassplot in Pukyong National University. Field measurements were carried out 25 times from March in 2010 to March in 2011 with nine points on the grassplot. Seasonal variations of carbon dioxide concentrations and fluxes showed an inverse relation. In summer, carbon dioxide concentrations are lower and carbon dioxide fluxes are higher. In winter, carbon dioxide concentrations are higher and carbon dioxide fluxes are lower. On the grassplot, carbon dioxide emission rate increase when the soil temperature is more than $20^{\circ}C$ and the emission rate decrease when the soil temperatures are less than $10^{\circ}C$. When the accumulated rainfall for five days before measurement day is 20~100 mm, it is showed that the more rainfall, the more carbon dioxide emissions. Carbon dioxide emission rate from the grassplot to the upper atmosphere was increased or decreased by the factors such as soil temperature, growth and wither of grass and rainfall. The results of this study showed that the emission of carbon dioxide in the grassplot is dominantly controlled by seasonal factors (especially soil temperature and rainfall).

Effect of Rainfall Patterns on the Response of Water Pressure and Slope Stability Within a Small Catchment: A Case Study in Jinbu-Myeon, South Korea

  • Viet, Tran The;Lee, Giha;Oh, Sewook;Kim, Minseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.5-16
    • /
    • 2016
  • This study aims to assess the influence of rainfall patterns on shallow landslides initiation. Doing so, five typical rainfall patterns with the same cumulative amount and intensity components comprising Advanced (A1 and A2), Centralized (C), and Delayed (D1 and D2) were designed based on a historical rainstorm event in Jinbu. Mt area. Those patterns were incorporated as the hydrological conditions into the Transient Rainfall Infiltration and Grid-based Regional Slope-stability Model (TRIGRS) to assess their influences on groundwater pressure and changes in the stability of the slope. The results revealed that not only the cumulative rainfall thresholds necessary to initiate landslides, but also the rate at which the factor of safety decreases and the time required to reach the critical state, are governed by rainfall patterns. The sooner the peak rainfall intensity, the smaller the cumulative rainfall threshold, and the shorter the time until landslide occurrence. Left-skewed patterns were found to have a greater effect on landslide initiation. Specifically, among five rainfalls, pattern (A1) produced the most critical state. The severity of response was followed by patterns A2, C, D1, and D2. Our conclusion is that rainfall patterns have a significant effect on the cumulative rainfall threshold, the build-up of groundwater pressure, and the occurrence of shallow landslides.

Effects of Rainfall and Salinity on Reaeration (강우의 염분이 재폭기에 미치는 영향)

  • 최재성;연기석;김건흥;안상진
    • Water for future
    • /
    • v.21 no.3
    • /
    • pp.281-290
    • /
    • 1988
  • As the aeration is one of the most important roles for the purification of polluted water, aquatic aerobic microorganism makes use of aerated dissolved oxygen to decompose the pollutant and purify water. In this study, a reactor was operated in a laboratory to examine the effects of salinity and rainfall on reaeration and then a model was proposed to estimate the reaeration coefficient. From the results of the experiments, the reaeration coefficient, $k_2$($day^{-1}$), can be expressed by $k_2=k_{2f}+3.98667{\times}10^{-2}{\cdot}C+4.88437{\times}10^{-1}{\cdot}r\;where\;k_{2f}$ : the reaeration coefficient in the fresh water at $20{\circ}C,\;(day^{-1})$ C: chloride concentration, ($g/{\ell}$), r:rainfall intensity,(mm/hr) Accordingly, it is concluded that the rate of reaeration is proportional to the chloride concentration and rainfall intensity. Also, it is known that the rainfall intensity contributes to the overall oxygen balance in a body of water more significantly than the salinity.

  • PDF

Runoff Characteristics of Non-point Source According to Rainfall in Nam Watershed (남천에서의 강우시 비점오염물질의 유출특성)

  • Jang, Seong-Ho;Park, Jin-Sick
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • This study was conducted to identify the runoff characteristics of non-point source according to rainfall in Nam watershed. Land-uses of the Nam watershed were surveyed paddy field 4.5%, crop field 6.8%, mountainous 78.7%, urban 2.4%, and etc. 7.7%. Mean runoff coefficients in each area were observed Ⅰ area 0.08, Ⅱ area 0.08, and Ⅲ area 0.05. In the relationship between the rainfall and peak-flow, correlation coefficients(r) were investigated Ⅰ area -0.8609, Ⅱ area 0.6035, and Ⅲ area -0.4913. In the relationship between the antecedent dry period and first flow runoff, correlation coefficients(r) were investigated Ⅰ area -0.9093, Ⅱ area -0.1039, and Ⅲ area -0.7317. The discharge of pollutant concentrations relates to the flow rate of storm-water. In the relationship between the rainfall and watershed loading, exponent values of BOD, COD, SS, and T-N were estimated to 1.2751, 1.2003, 1.3744, and 1.1262, respectively.

The effect of Combined Sewer Overflows on river's water quality

  • Bae, Hun Kyun
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2020
  • The effect of Combined Sewer Overflow on the river system was investigated throughout three preliminary field tests and three main ones. As a result of the study, Combined Sewer Overflow did not affect water qualities on the main stream since the concentration of the main stream did not significantly changed during rainfall events although the water quality of tributaries has rapidly deteriorated due to the influence of the Combined Sewer Overflow during rainfall events. The main cause of the result is that the flow rate of the tributaries is considerably lower than that of the main stream, so that the tributaries with deteriorated water quality during rainfall events did not significantly affect the quality of the actual main stream. Therefore, the water quality of the Kumho River is more affected by the wastewater treatment facilities that discharges water continuously to the main stream than pollutants from non-point pollution sources during rainfall events. As a result, managements for discharges from wastewater treatment facilities should be strengthened in order to improve the water quality of the river.

Measurement of Rainfall using Sensor Signal Generated from Vehicle Rain Sensor (차량용 레인센서에서 생성된 센서시그널을 이용한 강우량 측정)

  • Kim, Young Gon;Lee, Suk Ho;Kim, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.227-235
    • /
    • 2018
  • In this study, we developed a relational formula for observing high - resolution rainfall using vehicle rain sensor. The vehicle rain sensor consists of eight channels. Each channel generates a sensor signal by detecting the amount of rainfall on the windshield of the vehicle when rainfall occurs. The higher the rainfall, the lower the sensor signal is. Using these characteristics of the sensor signal generated by the rain sensor, we developed a relational expression. In order to generate specific rainfall, an artificial rainfall generator was constructed and the change of the sensor signal according to the variation of the rainfall amount in the artificial rainfall generator was analyzed. Among them, the optimal sensor channel which reflects various rainfall amounts through the sensitivity analysis was selected. The sensor signal was generated in 5 minutes using the selected channel and the representative values of the generated 5 - minute sensor signals were set as the average, 25th, 50th, and 75th quartiles. The calculated rainfall values were applied to the actual rainfall data using the constructed relational equation and the calculated rainfall amount was compared with the rainfall values observed at the rainfall station. Although the reliability of the relational expression was somewhat lower than that of the data of the verification result data, it was judged that the experimental data of the residual range was insufficient. The rainfall value was calculated by applying the developed relation to the actual rainfall, and compared with the rainfall value generated by the ground rainfall observation instrument observed at the same time to verify the reliability. As a result, the rain sensor showed a fine rainfall of less than 0.5 mm And the average observation error was 0.36mm.

An Analysis of Runoff Reduction Effect of Infiltration Facilities in Urban Area (도시유역에서 침투시설의 우수유출저감효과 분석)

  • Lee, Jae-Joon;Kim, Ho-Nyun;Kwak, Chang-Jae;Lee, Sang-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.628-631
    • /
    • 2007
  • One of the structural measures for the peak flow reduction is infiltration facilities. There are many types in infiltration facilities - infiltration basin, trench, bed, porous pavement, percolated subdrain, dry well. In this study runoff reduction effect of infiltration trench is analyzed by WinSLAMM. Runoff reduction effect is investigated by each design rainfall and temporal pattern of rainfall particularly. The biggest reduction is shown in Yen and Chow's temporal pattern of design rainfall and the smallest reduction is shown in Huff's first quartile pattern. Runoff reduction rate is presented about 6 to 14 percentage, and the larger return period, the smaller runoff reduction rate.

  • PDF

Prediction of Return Periods of Sewer Flooding Due to Climate Change in Major Cities (기후변화에 따른 주요 도시의 하수도 침수 재현기간 예측)

  • Park, Kyoohong;Yu, Soonyu;Byambadorj, Elbegjargal
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.41-49
    • /
    • 2016
  • In this study, rainfall characteristics with stationary and non-stationary perspectives were analyzed using generalized extreme value (GEV) distribution and Gumbel distribution models with rainfall data collected in major cities of Korea to reevaluate the return period of sewer flooding in those cities. As a result, the probable rainfall for GEV and Gumbel distribution in non-stationary state both increased with time(t), compared to the stationary probable rainfall. Considering the reliability of ${\xi}_1$, a variable reflecting the increase of storm events due to climate change, the reliability of the rainfall duration for Seoul, Daegu, and Gwangju in the GEV distribution was over 90%, indicating that the probability of rainfall increase was high. As for the Gumbel distribution, Wonju, Daegu, and Gwangju showed the higher reliability while Daejeon showed the lower reliability than the other cities. In addition, application of the maximum annual rainfall change rate (${\xi}_1{\cdot}t$) to the location parameter made possible the prediction of return period by time, therefore leading to the evaluation of design recurrence interval.