• Title/Summary/Keyword: Rainfall Distribution

Search Result 903, Processing Time 0.025 seconds

Distribution of average rainfall event-depth for overflow risk-based design of detention storage basin (월류위험도 기반 저류지 설계를 위한 평균강우량도 작성)

  • Kim, Dae Geun;Park, Sun Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • This study collected the latest 30-year (1976~2005) continuous rainfall data hourly recorded at 61 meterological observatories in Korea, and the continuous rainfall data was divided into individual rainfall events. In addition, distribution charts of average rainfall event-depth were created to facilitate the application to the overflow risk-based design of detention storage basin. This study shows that 4 hour is appropriate for SST (storm separation time) to separate individual rainfall events from the continuous rainfall data, and the one-parameter exponential distribution is suitable for the frequency distribution of rainfall event depths for the domestic rainfall data. The analysis of the domestic rainfall data using SST of 4 hour showed that the individual rainfall event was 1380 to 2031 times, the average rainfall event-depth was 19.1 to 32.4mm, and ranged between 0.877 and 0.926. Distribution charts of average rainfall event-depth were created for 4hour and 6 hour of SST, respectively. The inland Gyeongsangbuk-do, Western coastal area and inland of Jeollabuk-do had relatively lower average rainfall event-depth, whereas Southern coastal area, such as Namhae, Yeosu, and Jeju-do had relatively higher average rainfall event-depth.

Estimation of Drought Rainfall According to Consecutive Duration and Return Period Using Probability Distribution (확률분포에 의한 지속기간 및 빈도별 가뭄우량 추정)

  • Lee, Soon Hyuk;Maeng, Sung Jin;Ryoo, Kyong Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1103-1106
    • /
    • 2004
  • The objective of this study is to induce the design drought rainfall by the methodology of L-moment including testing homogeneity, independence and outlier of the data of annual minimum monthly rainfall in 57 rainfall stations in Korea in terms of consecutive duration for 1, 2, 4, 6, 9 and 12 months. To select appropriate distribution of the data for annual minimum monthy rainfall by rainfall station, the distribution of generalized extreme value (GEV), generalized logistic (GLO) as well as that of generalized pareto (GPA) are applied and the appropriateness of the applied GEV, GLO, and GPA distribution is judged by L-moment ratio diagram and Kolmogorov-Smirnov (K-S) test. As for the annual minimum monthly rainfall measured by rainfall station and that stimulated by Monte Carlo techniques, the parameters of the appropriately selected GEV and GPA distributions are calculated by the methodology of L-moment and the design drought rainfall is induced. Through the comparative analysis of design drought rainfall induced by GEV and GPA distribution by rainfall station, the optimal design drought rainfall by rainfall station is provided.

  • PDF

Analysis on the Characteristics about Representative Temporal-distribution of Rainfall in the Annual Maximum Independent Rainfall Events at Seoul using Beta Distribution (베타분포를 이용한 서울 지점 연 최대치 독립 호우사상의 대표 시간분포 특성 분석)

  • Jun, Chang Hyun;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.361-372
    • /
    • 2013
  • This study used the beta distribution to analyze the independent annual maximum rainfall events from 1961 to 2010 and decided the representative rainfall event for Seoul. In detail, the annual maximum rainfall events were divided into two groups, the upper 50% and the lower 50%. For each group, a beta distribution was derived to pass the mean location of the rainfall peaks. Finally, the representative rainfall event was decided as the rainfall histogram of the arithmetic average of the two beta distributions derived. The representative rainfall event derived has a realistic shape very similar to those observed annual maximum rainfall events, especially with the higher rainfall peak compared to that of the Huff distribution. Comparison with other rainfall distribution models shows that the temporal distribution of the representative rainfall event derived in this study is most similar to the Keifer & Chu model.

The Qualifications for the Application of the Rainfall Spatial Distribution Analysis Technique (강우량 공간분포 분석기법의 적용조건에 관한 연구)

  • Hwang Sye-Woon;Park Seung-Woo;Cho Young-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.943-947
    • /
    • 2005
  • This study was intended to interpose an objection about the analysis of rainfall spatial distribution without a proper standard, and offer the improved approach using 1,he geostatistical analysis method to analyze it. For this, spatially distributed daily rainfall data sets were collected for 41 weather stations in study area, and variogram and correlation analysis were conducted. In the results of correlation analysis, it was found that the longer distance between the stations reduces the correlation of the rainfall data, and maltes the characteristics of the rainfall spatial distribution. The variogram analysis shows that correlation range was less than 50 km for the 17 daily rainfall data sets of total 91 sets. It says that it involves some rike, to determine the application method for rainfall spatial distribution without some qualifications, hence the Application standards of the Rainfall Spatial Distribution Analysis Technique, were essential and that was contingent on characteristics of rainfall and landscape.

  • PDF

Distribution of average intervent times between adjacent rainfall events for overflow risk-based design of storm-water infiltration basin (월류위험도 기반 침투형저류지 설계를 위한 평균무강우지속시간도 작성)

  • Kim, Dae Geun;Park, Sun Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.195-203
    • /
    • 2008
  • This study collected the latest 30-year (1976~2005) continuous rainfall data hourly recorded at 61 meterological observatories in Korea. The continuous rainfall data was divided into individual rainfall events. In addition, distribution charts of average intervent times between adjacent rainfall events were created to facilitate the application to the overflow risk-based design of storm-water infiltration basin. This study shows that the one-parameter exponential distribution is suitable for the frequency distribution of the average intervent times for the domestic rainfall data. Distribution charts of the average intervent times were created for 4 hour and 6 hour of storm separation time, respectively. The inland Gyeongsangbuk-do and Western coastal area had relatively longer average intervent times, whereas Southern coastal area and Jeju-do had relatively shorter average intervent times.

Characteristics of Coagulants Distribution by the Pumping Rate in Pump Diffusion Mixer (Pump Diffusion Mixer에서 압력수량에 따른 응집제 확산분포 특성)

  • Park, Youngoh;Kim, Ki-Don;Park, No-Suk;Lim, Jae-Lim;Lim, Kyung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.65-71
    • /
    • 2008
  • This study collected the latest 30-year (1976~2005) continuous rainfall data hourly recorded at 61 meterological observatories in Korea, and the continuous rainfall data was divided into individual rainfall events. In addition, distribution charts of average rainfall event-depth were created to facilitate the application to the overflow risk-based design of detention storage basin. This study shows that 4 hour is appropriate for SST (storm separation time) to separate individual rainfall events from the continuous rainfall data, and the one-parameter exponential distribution is suitable for the frequency distribution of rainfall event depths for the domestic rainfall data. The analysis of the domestic rainfall data using SST of 4 hour showed that the individual rainfall event was 1380 to 2031 times, the average rainfall event-depth was 19.1 to 32.4mm, and ranged between 0.877 and 0.926. Distribution charts of average rainfall event-depth were created for 4hour and 6 hour of SST, respectively. The inland Gyeongsangbuk-do, Western coastal area and inland of Jeollabuk-do had relatively lower average rainfall event-depth, whereas Southern coastal area, such as Namhae, Yeosu, and Jeju-do had relatively higher average rainfall event-depth.

Probability Distribution of Rainfall Events Series with Annual Maximum Continuous Rainfall Depths (매년최대 연속강우량에 따른 강우사상 계열의 확률분포에 관한 연구)

  • 박상덕
    • Water for future
    • /
    • v.28 no.2
    • /
    • pp.145-154
    • /
    • 1995
  • The various analyses of the historical rainfall data need to be utilized in a hydraulic engineering project. The probability distributions of the rainfall events according to annual maximum continuous rainfall depths are studied for the hydrologic frequency analysis. The bivariate normal distribution, the bivariate lognormal distribution, and the bivariate gamma distribution are applied to the rainfall events composed of rainfall depths and its durations at Kangnung, Seoul, Incheon, Chupungnyung, Teagu, Jeonju, Kwangju, and Busan. These rainfall events are fitted to the the bivariate normal distribution and the bivariate lognormal distribution, but not fitted to the bivariate gamma distribution. Frequency curves of probability rainfall events are suggested from the probability distribution selected by the goodness-of-fit test.

  • PDF

Effect of Temporal Distribution of Rainfall on Water-Surface Level of Sihwa Lake (강우분포유형이 저수지의 홍수위에 미치는 영향 (시화호를 중심으로))

  • Lee, Jong-Kyu;Lee, Jai-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.325-343
    • /
    • 2003
  • In this study, several types of rainfall time distribution of the probabilistic rainfall amount have been applied to the Sihwa Lake, located in Gyounggi Province, Korea and their runoff characteristics, obtained by the Hec-Hms program, according to the rainfall distribution types, were compared and analysed. And then, the influences of the above rainfall distribution types of the highest water level of the reservoir, computed through the reservoir flood routing, were analysed. The tidal variation was considered, performing the flood routing and, in addition, the new program, called “IWSEA”, which can compute the reservoir water level, was developed. To conclude, when the Mononobe type of the rainfall distribution was used, the largest inflow flood discharge into the reservoir was performed and the highest reservoir water level was obtained when the Pilgrim-Cordery type of the rainfall distribution was applied.

Application of Hidden Markov Chain Model to identify temporal distribution of sub-daily rainfall in South Korea

  • Chandrasekara, S.S.K;Kim, Yong-Tak;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.499-499
    • /
    • 2018
  • Hydro-meteorological extremes are trivial in these days. Therefore, it is important to identify extreme hydrological events in advance to mitigate the damage due to the extreme events. In this context, exploring temporal distribution of sub-daily extreme rainfall at multiple rain gauges would informative to identify different states to describe severity of the disaster. This study proposehidden Markov chain model (HMM) based rainfall analysis tool to understand the temporal sub-daily rainfall patterns over South Korea. Hourly and daily rainfall data between 1961 and 2017 for 92 stations were used for the study. HMM was applied to daily rainfall series to identify an observed hidden state associated with rainfall frequency and intensity, and further utilized the estimated hidden states to derive a temporal distribution of daily extreme rainfall. Transition between states over time was clearly identified, because HMM obviously identifies the temporal dependence in the daily rainfall states. The proposed HMM was very useful tool to derive the temporal attributes of the daily rainfall in South Korea. Further, daily rainfall series were disaggregated into sub-daily rainfall sequences based on the temporal distribution of hourly rainfall data.

  • PDF

A mathematical spatial interpolation method for the estimation of convective rainfall distribution over small watersheds

  • Zhang, Shengtang;Zhang, Jingzhou;Liu, Yin;Liu, Yuanchen
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.226-232
    • /
    • 2016
  • Rainfall is one of crucial factors that impact on our environment. Rainfall data is important in water resources management, flood forecasting, and designing hydraulic structures. However, it is not available in some rural watersheds without rain gauges. Thus, effective ways of interpolating the available records are needed. Despite many widely used spatial interpolation methods, few studies have investigated rainfall center characteristics. Based on the theory that the spatial distribution of convective rainfall event has a definite center with maximum rainfall, we present a mathematical interpolation method to estimate convective rainfall distribution and indicate the rainfall center location and the center rainfall volume. We apply the method to estimate three convective rainfall events in Santa Catalina Island where reliable hydrological data is available. A cross-validation technique is used to evaluate the method. The result shows that the method will suffer from high relative error in two situations: 1) when estimating the minimum rainfall and 2) when estimating an external site. For all other situations, the method's performance is reasonable and acceptable. Since the method is based on a continuous function, it can provide distributed rainfall data for distributed hydrological model sand indicate statistical characteristics of given areas via mathematical calculation.