• Title/Summary/Keyword: Rainfall Days

Search Result 480, Processing Time 0.033 seconds

Affecting Discharge of Flood Water in Paddy Field from Selecting Rainfall with Fixed and Unfixed Duration (고정, 임의시간 강우량 선택에 따른 농경지 배수 영향 분석)

  • Hwang, Dong Joo;Kim, Byoung Gyu;Shim, Jwa Keun
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.64-76
    • /
    • 2012
  • Recently, it has been increased disaster of crops and agricultural facilities with climate change such as regional storm, typhoon. However agricultural facilities have unsafe design criteria of improving drainage corresponding to this change. This study has analyzed the impact that inundation area and magnitude of drainage-facility is decided based on fixed- and unfixed-duration precipitation by applying revised design criteria of drainage for climate change. The result was shown that 1-day and 2-days rainfall for 20-years return period has increased about 11.4%, 4.4% respectively by changing fixed- to unfixed duration. And the increase rate of design flood was 15.0%. The result was also shown that Inundation area was enlarged by 6.6% as well as increased inundation duration under same basic condition in designed rainfall between fixed- and unfixed-duration. According to the analysis, it is necessary for pump capacity in unfixed-duration to be increased by 70% for same effect with fixed-duration. Therefore, when computing method of probability precipitation is changed from fixed one to unfixed-duration by applying revised design criteria, there seems to be improving effect in drainage design. Because 1440-minutes rainfall for 20-years return period with unfixed-duration is more effective than 1-day rainfall for 30-years return period with fixed-duration. By applying unfixed-duration rainfall, capacity of drainage facilities need to be expanded to achieve the same effects (Inundation depth & duration) with fixed-duration rainfall. Further study is required for considering each condition of climate, topography and drainage by applying revised design criteria.

  • PDF

A Proposed Simple Method for Multisite Point Rainfall Generation (일강우자료의 다지점 모의 발생을 위한 간단한 방법 제안)

  • Yu, Cheol-Sang;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.99-110
    • /
    • 2000
  • In this study we proposed a simple method for generating multi-site daily rainfall based on the 1-order Markov chain and considering the spatial correlation. The occurrence of rainfall is simulated by a simple 1st-order Markov chain and its intensity to be chosen randomly from the observed data. The spatial correlation between sites could be conserved as the rainfall intensity at each site is to be chosen consistently with the target site in time through generation. It is found that the generated daily rainfall data reproduce genera] characteristics of the observed data such as average, standard deviation, average number of wet and dry days, but the clustering level in time is somewhat loosened. Thus, the lag-I correlation coefficient of the generated data gave smaller value than the observed, also the average lengths of wet run and dry run and the wet-to-wet and dry-to-dry probabilities were a bit less than the observed. This drawback seems to be overcome somewhat by choosing a proper site representing overall basin characteristics or by use of more detailed states of rainfall occurrence.

  • PDF

Flood damage cost projection in Korea using 26 GCM outputs (26 GCM 결과를 이용한 미래 홍수피해액 예측)

  • Kim, Myojeong;Kim, Gwangseob
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1149-1159
    • /
    • 2018
  • This study aims to predict the future flood damage cost of 113 middle range watersheds using 26 GCM outputs, hourly maximum rainfall, 10-min maximum rainfall, number of days of 80 mm/day, daily rainfall maximum, annual rainfall amount, DEM, urbanization ratio, population density, asset density, road improvement ratio, river improvement ratio, drainage system improvement ratio, pumping capacity, detention basin capacity and previous flood damage costs. A constrained multiple linear regression model was used to construct the relationships between the flood damage cost and other variables. Future flood damage costs were estimated for different RCP scenarios such as 4.5 and 8.5. Results demonstrated that rainfall related factors such as annual rainfall amount, rainfall extremes etc. widely increase. It causes nationwide future flood damage cost increase. Especially the flood damage cost for Eastern part watersheds of Kangwondo and Namgang dam area may mainly increase.

A study on the estimation of hydrologic function for ecological restoration at forested wetland (산지습지의 생태적 복원을 위한 수문학적 기능 평가에 관한 연구)

  • Jung, Yu-Gyeong;Kang, Won-Seok;Lee, Heon-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.97-111
    • /
    • 2022
  • This study was conducted as restoration work to improve the discharge in forested wetlands where there is a concern of damage and observed changes in the discharge and groundwater level. The monthly changes showed that during the wet season, the amount of discharge decreased after restoration and GWL increased. It showed that during the dry season, the GWL and discharge increased. The increased discharge after restoration seems to be the difference in the number of days with no rainfall duration. The change in discharge for each unit of rainfall showed a tendency to increase the baseflow and decrease the direct discharge after restoration. The recharge ratio of GWL showed a decreasing tendency as rainfall was higher. After restoration, it showed a higher tendency under rainfall with less than 20mm. It has been confirmed that the restoration implemented by the study caused such an effect as the increased baseflow and increased GWL. It would be an effective restoration method to maintain water resources in forested wetlands. In the initial rainfall, it demonstrated a certain level of effect, but it is necessary to develop a restoration technology that can decrease the amount of water discharged after the end of rainfall or during the period of no rainfall to protect and maintain the forested wetlands. Streamflow should be identified by each type of terrain of wetlands and a proper restoration countermeasure should be devised for the site where the discharge frequently occurs.

Impact of Land-based Pollution Sources on Seawater and Shellfish after Rainfall Event in the Jindongman Area (강우 발생에 의한 진동만해역의 육상오염원이 해수 및 패류에 미치는 영향 분석)

  • Jang Won Lee;Minchul Yoon;Ji Hoon Kim;Sung Rae Jo;Ki Ho Nam;Kwang Soo Ha;Kunbawui Park
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.798-809
    • /
    • 2023
  • In this study, we evaluated the impacts of land-based pollution sources on seawater and shellfish in the Jindongman area after 20.5 mm and 90.6 mm rainfall events. We analyzed sanitary indicator microorganisms used in survey management, such as total coliform, fecal coliform, Escherichia coli, and male-specific coliphage in Waste water treatment plant (WWTP), major inland pollution source,s seawater, and shellfish for 4 days after rainfall events. Our results showed that the range of coliform group and fecal coliform was 1.8-49 and <1.8-4.5 MPN (most probable number)/100 mL, respectively, after rainfall events in WWTP discharge water. Furthermore, the radius of the calculated impacted area of major inland pollution sources ranged from 5 to 798 m after 20.5 mm of rainfall and 30 to 1,031 m after 90.6 mm of rainfall. The fecal coliform of seawater at 30 stations in the shellfish growing area and areas adjacent to four stations was <1.8-130 and from <1.8-79 MPN/100 mL, respectively. The E. coli level of shellfish at 7 stations in the shellfish growing area was <18-220 MPN/100 g.

Analysis on Spatial Variability of Rainfall in a Small Area (소규모 지역에 대한 강우의 공간변화도 분석)

  • Kim, Jong Pil;Kim, Won;Kim, Dong-Gu;Lee, Chanjoo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.905-913
    • /
    • 2015
  • This study deployed six rain gauges in a small area for a dense network observing rainfall and analyzed the spatial variability of rainfall. They were arranged in a $2{\times}3$ rectangular grid with equal space of 60 m. The rainfall measurements from five gauges were analyzed during the period of 50 days because one was seriously affected by alien substance. The maximum difference in cumulative rainfall from them is approximately 38.5 mm. The correlation coefficients from hourly rainfall time series differ from each other while daily rainfall coincide. The coefficient of variation in hourly rainfall varies up to 224% and that in daily rainfall up to 91%. The results from uncertainty analysis show that with only four rain gauges areal mean rainfall cannot be estimated over 95% accuracy. For reliable flood prediction and effective water management it is required to develop a new technique for the estimation of areal rainfall.

A Feasibility Study of a Rainfall Triggeirng Index Model to Warn Landslides in Korea (산사태 경보를 위한 RTI 모델의 적용성 평가)

  • Chae, Byung-Gon;Choi, Junghae;Jeong, Hae Keun
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.235-250
    • /
    • 2016
  • In Korea, 70% of the annual rainfall falls in summer, and the number of days of extreme rainfall (over 200 mm) is increasing over time. Because rainfall is the most important trigger of landslides, it is necessary to decide a rainfall threshold for landslide warning and to develop a landslide warning model. This study selected 12 study areas that contained landslides with exactly known triggering times and locations, and also rainfall data. The feasibility of applying a Rainfall Triggering Index (RTI) to Korea is analyzed, and three RTI models that consider different time units for rainfall intensity are compared. The analyses show that the 60-minute RTI model failed to predict landslides in three of the study areas, while both the 30- and 10-minute RTI models gave successful predictions for all of the study areas. Each RTI model showed different mean response times to landslide warning: 4.04 hours in the 60-minute RTI model, 6.08 hours in the 30-minute RTI model, and 9.15 hours in the 10-minute RTI model. Longer response times to landslides were possible using models that considered rainfall intensity for shorter periods of time. Considering the large variations in rainfall intensity that may occur within short periods in Korea, it is possible to increase the accuracy of prediction, and thereby improve the early warning of landslides, using a RTI model that considers rainfall intensity for periods of less than 1 hour.

A study on Compare Characteristics of Nonpoint Source in Storm-water versus Steepness of Field Slope (밭경사에 따른 강우유출수 내의 비점오염물질 특성 비교 분석)

  • Kim, Gi-Cheol;Choe, Yong-Hun;Won, Cheol-Hui;Choe, Jung-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1093-1102
    • /
    • 2009
  • This study was focused on analyse Nonpoint source characteristics from Flat slope field and Steep slope field. We performed Storm-water monitering for obtain flow data and concentration data. Totally, eleven times Event was occurred. We calculated EMC(Event Mean Concentration) and Pollutants Loads using data we obtained. As a result, steep slope field has more discharge than flat field. SS value, one of the water quality contents, has largest variation and T-N has least variation. There is runoff differences even though events has same rainfall. We assume that not only amount of Rainfall, but also Rainfall Duration Times, Intensity, Number of Previous Non-precipitation days can affect to Run-off.

  • PDF

Cross Correlation Analysis of Gamma Exposure Rates and Rainfall, Hours of Saylight, Average Wind Speed in Gangneung Area (강릉 지역 공간 감마선량률과 강수량, 일조시간, 평균풍속 사이 교차 상관성 분석)

  • Cha, Hohwan;Kim, Jaehwa
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.5
    • /
    • pp.347-352
    • /
    • 2013
  • In this study, we analyze the cross correlation between Gamma exposure rates and Rainfall, Hours of daylight, Average wind speed using cross-correlation coefficient ${\rho}_{DCCA}$ and DCCA cross-correlation coefficient(DCCA ${\rho}$) method. Our data are measured simultaneous in Gangneung regional. First, we find the ${\rho}_{DCCA}$ between Gamma exposure rates and Rainfall is Day(3~7days) 0.57~0.48, Month(30days) 0.39, Season(90days) 0.34, Year(360days) 0.26, between Gamma exposure rates and Hours of daylight is Day -0.20~-0.23, Month -0.22, Season -0.17, Year -0.13, between Gamma exposure rates and Average wind speed is Day -0.10~-0.12, Month -0.11, Season -0.05, Year -0.05. Second, our finding is cross- correlation between Gamma exposure rates and Rainfall, is no cross-correlation between Gamma exposure rates and Hours of daylight, Average wind speed.

Changes of Soil Salinity due to Flooding in Newly Reclaimed Saline Soil (신간척지 토양에서 담수에 의한 토양염도 변화에 대한 개관)

  • Ryu, J.H.;Yang, C.H.;Kim, T.K.;Lee, S.B.;Kim, S.;Baek, N.H.;Choi, W.Y.;Kim, S.J.;Chung, D.Y.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.45-46
    • /
    • 2009
  • This study was carried out to identify the changes of EC during desalinization due to flooding in newly reclaimed saline soil. To do this, experimental plots were made of rotary tillage+water exchanging plot, flooding plot and rainfall flooding plot. In rotary tillage+water exchanging plot, drainage, rotary tillage and flooding were conducted at the interval of 7 days. In rotary tillage+water exchanging plot and flooding plot, plots were irrigated at the height of 10 cm. After 38 days desalinization, changes of EC values at top soil (0~20 cm) were as follows. In rotary tillage+water exchanging plot, EC decreased from $21.38dS\;m^{-1}$ to $2.16dS\;m^{-1}$ and in flooding plot, EC decreased from $13.97dS\;m^{-1}$ to $2.22dS\;m^{-1}$. In rotary tillage+water exchanging plot and flooding plot, EC values decreased below the EC criterion ($4.0dS\;m^{-1}$) of saline soil. In rainfall flooding plot, EC values decreased or increased according to amounts of rainfall and rainfall time. After 38 days, EC decreased from $16.7dS\;m^{-1}$ to $12.35dS\;m^{-1}$. In flooding plot, changes of EC due to soil depth were investigated. After 38 days desalinization, changes of EC due to soil depth were as follows. At 0~10 cm depth, EC value decreased from $13.08dS\;m^{-1}$ to $0.74dS\;m^{-1}$ (94.3% of salt was desalinized). At 10~20 cm depth, EC value decreased from $14.80dS\;m^{-1}$ to $3.69dS\;m^{-1}$ (75.2% of salt was desalinized). At 20~30 cm depth, soil was desalinized slowly compared with upper soil, EC value decreased from $13.57dS\;m^{-1}$ to $6.93dS\;m^{-1}$ (48.9% of salt was desalinized).