• Title/Summary/Keyword: Rainfall Accuracy

Search Result 359, Processing Time 0.027 seconds

Applicability of a Space-time Rainfall Downscaling Algorithm Based on Multifractal Framework in Modeling Heavy Rainfall Events in Korean Peninsula (강우의 시공간적 멀티프랙탈 특성에 기반을 둔 강우다운스케일링 기법의 한반도 호우사상에 대한 적용성 평가)

  • Lee, Dongryul;Lee, Jinsoo;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.839-852
    • /
    • 2014
  • This study analyzed the applicability of a rainfall downscaling algorithm in space-time multifractal framework (RDSTMF) in Korean Peninsula. To achieve this purpose, the 8 heavy rainfall events that occurred in Korea during the period between 2008 and 2012 were analyzed using the radar rainfall imagery. The result of the analysis indicated that there is a strong tendency of the multifractality for all 8 heavy rainfall events. Based on the multifractal exponents obtained from the analysis, the parameters of the RDSTMF were obtained and the relationship between the average intensity of the rainfall events and the parameters of the RDSTMF was developed. Based on this relationship, the synthetic space-time rainfall fields were generated using the RDSTMF. Then, the generated synthetic space-time rainfall fields were compared to the observation. The result of the comparison indicated that the RDSTMF can accurately reproduce the multifractal exponents of the observed rainfall field up to 3rd order and the cumulative density function of the observed space-time rainfall field with a reasoable accuracy.

Rainfall-Runoff Analysis of River Basin Using Spatial Data (지형공간 특성자료를 이용한 하천유역의 강우-유출해석)

  • 안승섭;이증석;도준현
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.949-955
    • /
    • 2003
  • The subject basin of the research was the basin of Yeongcheon Dam located in the upper reaches of the Kumho River. The parameters of the model were derived from the results of abstracting topological properties out of rainfall-runoff observation data about heavy rains and Digital Elevation Modeling(DEM) materials. This research aimed at suggesting the applicability of the CELLMOD Model, a distribution-type model, in interpreting runoff based on the topological properties of a river basin, by carrying out runoff interpretation far heavy rains using the model. To examine the applicability of the model, the calculated peaking characteristics in the hydrograph was analyzed in comparison with observed values and interpretation results by the Clark Model. According to the result of analysis using the CELLMOD Model proposed in the present research for interpreting the rainfall-runoff process, the model reduced the physical uncertainty in the rainfall-runoff process, and consequently, generated improved results in forecasting river runoff. Therefore it was concluded that the algorithm is appropriate for interpreting rainfall-runoff in river basins. However, to enhance accuracy in interpreting rainfall-runoff it is necessary to supplement heavy rain patterns in subject basins and to subdivide a basin into minor basins for analysis. In addition, it is necessary to apply the model to basins that have sufficient observation data, and to identify the correlation between model parameters and the basin characteristics(channel characteristics).

Statistical significance test of polynomial regression equation for Huff's quartile method of design rainfall (설계강우량의 Huff 4분위 방법 다항회귀식에 대한 유의성 검정)

  • Park, Jinhee;Lee, Jaejoon;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.263-272
    • /
    • 2018
  • For the design of hydraulic structures, the design flood discharge corresponding to a specific frequency is generally used by using the design storm calculated according to the rainfall-runoff relationship. In the past, empirical equations such as rational equations were used to calculate the peak flow rate. However, as the duration of rainfall is prolonged, the outflow patterns are different from the actual events, so the accuracy of the temporal distribution of the probability rainfall becomes important. In the present work, Huff's quartile method is used for the temporal distribution of rainfall, and the third quartile is generally used. The regression equation for Huff's quadratic curve applies a sixth order polynomial equation because of its high accuracy throughout the duration of rainfall. However, in statistical modeling, the regression equation needs to be concise in accordance with the principle of simplicity, and it is necessary to determine the regression coefficient based on the statistical significance level. Therefore, in this study, the statistical significance test for regression equation for temporal distribution of the Huff's quartile method, which is used as the temporal distribution method of design rainfall, is conducted for 69 rainfall observation stations under the jurisdiction of the Korea Meteorological Administration. It is statistically significant that the regression equation of the Huff's quartile method can be considered only up to the 4th order polynomial equation, as the regression coefficient is significant in most of the 69 rainfall observation stations.

Assessment of Dual-Polarization Radar for Flood Forecasting (이중편파 레이더의 홍수예보 활용성 평가)

  • Kim, Jeong-Bae;Choi, Woo-Seok;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.257-268
    • /
    • 2015
  • The objective of this study is to assess the dual-polarization radar for flood forecasting. First, radar rainfall has temporal and spatial errors, so estimated radar rainfall was compared with ground observation rainfall to assess accuracy improvement, especially, considering the radar range of observation and increase of the rainfall intensity. The results of this study showed that the error for estimated dual-polarization radar rainfall was less than single-polarization radar rainfall. And in this study, dual-polarization radar rainfall for flood forecasting was assessed using MAP (Mean Areal Precipitation) and SURR (Sejong University Rainfall Runoff) model in Namkang dam watershed. The results of MAP are more accurate using dual-polarization radar. And the results of runoff using dual-polarization radar rainfall showed that peak flow error was reduced approximately 12~63%, runoff volumes error was reduced by approximately 30~42%, and also the root mean square error decreased compared to the result of runoff using single-polarization radar rainfall. The results revealed that dual-polarization radar will contribute to improving the accuracy of the flood forecasting.

Radar rainfall prediction based on deep learning considering temporal consistency (시간 연속성을 고려한 딥러닝 기반 레이더 강우예측)

  • Shin, Hongjoon;Yoon, Seongsim;Choi, Jaemin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.301-309
    • /
    • 2021
  • In this study, we tried to improve the performance of the existing U-net-based deep learning rainfall prediction model, which can weaken the meaning of time series order. For this, ConvLSTM2D U-Net structure model considering temporal consistency of data was applied, and we evaluated accuracy of the ConvLSTM2D U-Net model using a RainNet model and an extrapolation-based advection model. In addition, we tried to improve the uncertainty in the model training process by performing learning not only with a single model but also with 10 ensemble models. The trained neural network rainfall prediction model was optimized to generate 10-minute advance prediction data using four consecutive data of the past 30 minutes from the present. The results of deep learning rainfall prediction models are difficult to identify schematically distinct differences, but with ConvLSTM2D U-Net, the magnitude of the prediction error is the smallest and the location of rainfall is relatively accurate. In particular, the ensemble ConvLSTM2D U-Net showed high CSI, low MAE, and a narrow error range, and predicted rainfall more accurately and stable prediction performance than other models. However, the prediction performance for a specific point was very low compared to the prediction performance for the entire area, and the deep learning rainfall prediction model also had limitations. Through this study, it was confirmed that the ConvLSTM2D U-Net neural network structure to account for the change of time could increase the prediction accuracy, but there is still a limitation of the convolution deep neural network model due to spatial smoothing in the strong rainfall region or detailed rainfall prediction.

Derivation of Probable Rainfall Intensity Formulas at Inchon District (인천지방 확률강우강도식의 유도)

  • Choe, Gye-Un;An, Tae-Jin;Gwon, Yeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.263-276
    • /
    • 2000
  • This paper is to derive the probable rainfall depths and the probable rainfall intensity formulas for Inchon Metropolitan district. The annual maximum rainfall data from 10 min. to 6 hours have been collected from the Inchon weather station. Eleven types of probability distribution are considered to estimate probable rainfall depths for 12 different storm durations at the Inchon Metropolitan district. Three tests including Chi-square, Kolmogorov-Smimov and Cramer Von Mises with the graphical analysis are adopted to select the best probability distribution. The probable rainfall intensity formulas are then determined by the least squares method using the trial and error approach. Five types of Talbot type, Sherman type, Japanese type, Unified type I, and Unified type II are considered to determine the best type for the Inchon rainfall intensity. The root mean squared errors are computed to compare the accuracy from the derived formulas. It has been suggested that the probable rainfall intensities having Unified type I for the short term duration should be the most reliable formulas by considering the root mean squared errors and the difference between computed probable rainfall depth and estimated probable rainfall depth.

  • PDF

Satellite-based Rainfall for Water Resources Application

  • Supattra, Visessri;Piyatida, Ruangrassamee;Teerawat, Ramindra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.188-188
    • /
    • 2017
  • Rainfall is an important input to hydrological models. The accuracy of hydrological studies for water resources and floods management depend primarily on the estimation of rainfall. Thailand is among the countries that have regularly affected by floods. Flood forecasting and warning are necessary to prevent or mitigate loss and damage. Merging near real time satellite-based precipitation estimation with relatively high spatial and temporal resolutions to ground gauged precipitation data could contribute to reducing uncertainty and increasing efficiency for flood forecasting application. This study tested the applicability of satellite-based rainfall for water resources management and flood forecasting. The objectives of the study are to assess uncertainty associated with satellite-based rainfall estimation, to perform bias correction for satellite-based rainfall products, and to evaluate the performance of the bias-corrected rainfall data for the prediction of flood events. This study was conducted using a case study of Thai catchments including the Chao Phraya, northeastern (Chi and Mun catchments), and the eastern catchments for the period of 2006-2015. Data used in the study included daily rainfall from ground gauges, telegauges, and near real time satellite-based rainfall products from TRMM, GSMaP and PERSIANN CCS. Uncertainty in satellite-based precipitation estimation was assessed using a set of indicators describing the capability to detect rainfall event and efficiency to capture rainfall pattern and amount. The results suggested that TRMM, GSMaP and PERSIANN CCS are potentially able to improve flood forecast especially after the process of bias correction. Recommendations for further study include extending the scope of the study from regional to national level, testing the model at finer spatial and temporal resolutions and assessing other bias correction methods.

  • PDF

Short-term Flood Forecasting Using Artificial Neural Networks (인공신경망 이론을 이용한 단기 홍수량 예측)

  • 강문성;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.45-57
    • /
    • 2003
  • An artificial neural network model was developed to analyze and forecast Short-term river runoff from the Naju watershed, in Korea. Error back propagation neural networks (EBPN) of hourly rainfall and runoff data were found to have a high performance In forecasting runoff. The number of hidden nodes were optimized using total error and Bayesian information criterion. Model forecasts are very accurate (i.e., relative error is less than 3% and $R^2$is greater than 0.99) for calibration and verification data sets. Increasing the time horizon for application data sets, thus mating the model suitable for flood forecasting. decreases the accuracy of the model. The resulting optimal EBPN models for forecasting hourly runoff consists of ten rainfall and four runoff data(ANN0410 model) and ten rainfall and ten runoff data(ANN1010 model). Performances of the ANN0410 and ANN1010 models remain satisfactory up to 6 hours (i.e., $R^2$is greater than 0.92).

Image-based rainfall prediction from a novel deep learning method

  • Byun, Jongyun;Kim, Jinwon;Jun, Changhyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.183-183
    • /
    • 2021
  • Deep learning methods and their application have become an essential part of prediction and modeling in water-related research areas, including hydrological processes, climate change, etc. It is known that application of deep learning leads to high availability of data sources in hydrology, which shows its usefulness in analysis of precipitation, runoff, groundwater level, evapotranspiration, and so on. However, there is still a limitation on microclimate analysis and prediction with deep learning methods because of deficiency of gauge-based data and shortcomings of existing technologies. In this study, a real-time rainfall prediction model was developed from a sky image data set with convolutional neural networks (CNNs). These daily image data were collected at Chung-Ang University and Korea University. For high accuracy of the proposed model, it considers data classification, image processing, ratio adjustment of no-rain data. Rainfall prediction data were compared with minutely rainfall data at rain gauge stations close to image sensors. It indicates that the proposed model could offer an interpolation of current rainfall observation system and have large potential to fill an observation gap. Information from small-scaled areas leads to advance in accurate weather forecasting and hydrological modeling at a micro scale.

  • PDF

Rainfall Prediction of Seoul Area by the State-Vector Model (상태벡터 모형에 의한 서울지역의 강우예측)

  • Chu, Chul
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.219-233
    • /
    • 1995
  • A non-stationary multivariate model is selected in which the mean and variance of rainfall are not temporally or spatially constant. And the rainfall prediction system is constructed which uses the recursive estimation algorithm, Kalman filter, to estimate system states and parameters of rainfall model simulataneously. The on-line, real-time, multivariate short-term, rainfall prediction for multi-stations and lead-times is carried out through the estimation of non-stationary mean and variance by the storm counter method, the normalized residual covariance and rainfall speed. The results of rainfall prediction system model agree with those generated by non-stationary multivariate model. The longer the lead time is, the larger the root mean square error becomes and the further the model efficiency decreases form 1. Thus, the accuracy of the rainfall prediction decreases as the lead time gets longer. Also it shows that the mean obtained by storm counter method constitutes the most significant part of the rainfall structure.

  • PDF