• Title/Summary/Keyword: Rain water system

Search Result 272, Processing Time 0.036 seconds

A Case Study on Green Remodeling of Water System in Jeju Airport (우수 시스템을 적용한 친환경 리모델링 방안 : 제주 국제공항을 대상으로)

  • Kim, Byung-Hyun;Na, Su-Yeun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.464-469
    • /
    • 2007
  • The case study aims to propose the green remodeling strategies of water system in Jeju international airport facilities considering the environmental conditions of Jeju Island. The rain water was proposed as an alternative water source to conserve of under ground water resources. Computations of daily precipitation, rain collection, runoff and water usage was conducted to investigated the feasibility of the rain water system design.

A Experimental Study on the Ground Source and Rain Water Heat Source Heat Pump System in Apartment (공동주택 적용 지열 및 우수열원을 이용한 히트펌프의 실험적 연구)

  • Ko, Gun-Hyuk;Kim, Ji-Young;Kang, Eun-Chul;Lee, Euy-Joon;Hyun, Myung-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.833-837
    • /
    • 2008
  • GSHP(Ground Source Heat Pump) has been extensively disseminated due to the recent increasing demand over new and renewable energy. In this study, the operating performance of rain water and ground source heat pump system (RW-GSHP) was compared with GSHP during the heating test. Leaving load temperature(LLT) was $50^{\circ}C$, $53^{\circ}C$, $56^{\circ}C$, respectively and rain water tank temperature(RWT) was $13^{\circ}C$, $15^{\circ}C$, $17^{\circ}C$ in this heating test. The experiment was focused on comparison of the system operating performance depending on leaving load temperature (LLT) and rain water tank temperature (RWT). The results showed that rain water and ground source heat pump system (RW-GSHP) was higher heating performance and COPh than those of GSHP.

  • PDF

Development of a smart rain gauge system for continuous and accurate observations of light and heavy rainfall

  • Han, Byungjoo;Oh, Yeontaek;Nguyen, Hoang Hai;Jung, Woosung;Shin, Daeyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.334-334
    • /
    • 2022
  • Improvement of old-fashioned rain gauge systems for automatic, timely, continuous, and accurate precipitation observation is highly essential for weather/climate prediction and natural hazards early warning, since the occurrence frequency and intensity of heavy and extreme precipitation events (especially floods) are recently getting more increase and severe worldwide due to climate change. Although rain gauge accuracy of 0.1 mm is recommended by the World Meteorological Organization (WMO), the traditional rain gauges in both weighting and tipping bucket types are often unable to meet that demand due to several existing technical limitations together with higher production and maintenance costs. Therefore, we aim to introduce a newly developed and cost-effective hybrid rain gauge system at 0.1 mm accuracy that combines advantages of weighting and tipping bucket types for continuous, automatic, and accurate precipitation observation, where the errors from long-term load cells and external environmental sources (e.g., winds) can be removed via an automatic drainage system and artificial intelligence-based data quality control procedure. Our rain gauge system consists of an instrument unit for measuring precipitation, a communication unit for transmitting and receiving measured precipitation signals, and a database unit for storing, processing, and analyzing precipitation data. This newly developed rain gauge was designed according to the weather instrument criteria, where precipitation amounts filled into the tipping bucket are measured considering the receiver's diameter, the maximum measurement of precipitation, drainage time, and the conductivity marking. Moreover, it is also designed to transmit the measured precipitation data stored in the PCB through RS232, RS485, and TCP/IP, together with connecting to the data logger to enable data collection and analysis based on user needs. Preliminary results from a comparison with an existing 1.0-mm tipping bucket rain gauge indicated that our developed rain gauge has an excellent performance in continuous precipitation observation with higher measurement accuracy, more correct precipitation days observed (120 days), and a lower error of roughly 27 mm occurred during the measurement period.

  • PDF

Analysis of Economy from Rainwater Use System in Main Stadium of Busan Asiad (부산 아시아드 주경기장의 우수 시스템 도입에 따른 경제성 분석)

  • Yoon, Jun-Ho;Koo, Bon-Tae;Wang, Young-Joo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.478-484
    • /
    • 2009
  • Currently, the interests of shortage of water supply is on the rise. Even developed countries are also suffering from a drought and insufficient water supply. Likewise other countries, we do have same problem, but unfortunately we do not have any proper solution either. One of the ways suggested to settle the problem is using rain water that gets people's eyes. Rain water is evaluated such as a good way to blow the problem of water shortage out and unlimited resource. So, this study focused on the prospect of rain harvest system and possible economic effects if this system adopt in Main Stadium of Busan Asiad.

  • PDF

The Effect Analysis for Rain Attenuation of VSAT

  • Tak, Hong-Sung;Wook, Shin-Gang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.65.4-65
    • /
    • 2001
  • In case of data transmission using the upper 10GHz frequency, rain results in attenuation of radio waves. And the most serious atmospheric effect in a satellite link is the rainfall. The attenuation of rainfall very seriously affects the quality of transmission line. Because the rain increases thermal noise and interference, and decreases the amplitude of the signal. KOWACO manages the VSAT system instead of VHF network for communication of rain and water-level data from 1998. The purpose of this system is to monitor the change of water-level and rain data during a flood duration. VHF system acquires the data by a call per a hour. But the satellite network obtains the data whenever event data occur. Thus the satellite network is more powerful than the VHF system. In study ...

  • PDF

Watertightness Property Evaluation of Rain-Block System (개폐식 대공간 구조물에서 지붕 맞댐부 우수차단 시스템의 수밀성 평가에 관한 연구)

  • Kim, Yun-Ho;Baek, Ki-Youl;Kim, Jong-Su;Lee, Sun-Gyu;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.13-16
    • /
    • 2010
  • This study is an Investigation on the Watertightness Properties of Rain-Block System on the Sliding-Roof Joint of Large-Span Membrane Structures. In this experimental, we test the watertightness performance of joint part of sliding door in roof of large span membrane structure(for pilot project) under environment of rain and wind. A shape of rain water blocking systems of joint part in sliding door verifies the defects and effects of water leakage prevention in precipitation with the wind conditions. For obtaining watertightness of large span membrane structures, it is necessary quality of joints and performance, and quality of membrane material of a retractable roof as well as a closed roof. Also, for obtaining quality in joints, it is essential to make a watertightness guideline for design of large-span membrane.

  • PDF

Water conservation effect of concave greenroof system and its influential factors (오목형 옥상녹화의 수자원확보효과와 영향인자)

  • Baek, So-Young;Han, Moo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.165-169
    • /
    • 2015
  • Green roofs are gaining much interest in many cities around the world due to its multi-purpose effects of water conservation, flood mitigation and aesthetic benefits. However it may cause additional water demand to maintain green plants, which may intensify the current and future water shortage problems. While ordinary concrete roofs and normal green roof drains off rain water, concave green roof system can retain rain water because of its water holding capability. In this study, the water conservation effect of concave green roof was compared to normal roof on #35 building in Seoul National University, Seoul, Korea. For seven rainfall events the amount of stored rainwater and runoff were measured and proved water conservation effect of the concave green roof system. The concave green roof system of which area is 140m2 showed effect of water conservation from 1.8ton to 7.2ton and the most influence factors on water conservation in green roof are rainfall and antecedent day. If this concave green roof is applied to many buildings in the cities, it is expected as a way to water conservation through rainfall storage.

Evaluation of Stored Rainwater Quality at Galmoe Middle School Rainwater Harvesting System (갈뫼중학교 빗물이용시설에서의 저장 빗물수질평가)

  • Han, Moo-Young;Lee, Soon-Jai
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • One of the major obstacles confronted in promoting the rainwater harvesting is the concerns of acid rain and heavy metals. Although there are many data concerning the quality of rainwater precipitation for the study of acid rain, the study on the quality of stored rainwater has been limited. In this study, we monitored the quality of stored rainwater at Galmoe middle school, where a rainwater harvesting system is installed and in use for more than two years. We measured water quality parameters such as pH, Electro Conductivity(EC), Dissolved Oxygen(DO), and some metals (aluminium (Al), chromium(Cr), manganese(Mn), zinc(Zn), copper(Cu), arsenic(As), cadmium(Cd), lead(Pb)). The monitoring period was during one year from September 9th 2003 to August 5th 2004. It was observed that the average pH of stored rainwater is neutral. DO is similar to tap water and EC is lower than tap water. Metal Concentrations are within the concentration specified in Drinking Water Quality Standard. Overall, the stored rainwater quality is good enough for sundry use and there's no threat of acid rain and air pollution, if the rainwater harvesting system is well designed and maintained.

A Study on the Establishment of Water Circulation System for the Eastern Pangyo New Town (동판교 신도시의 물순환 체계 구축방안)

  • Choi, Hee-Sun;Kim, Kwi-Gon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.3
    • /
    • pp.49-58
    • /
    • 2009
  • This study was done to provide a case model with a concept of environmental integration based on the water circulation system. Area of interest (AOI) is the Eastern Pangyo New Town area, which has several advantages in adaptation of a water circulation system. The AOI has a potential of maintaining water resources, and has a good condition to construct the water circulation system. Research done for the purpose of the establishment of the water circulation system in the Eastern Pangyo New Town shows the following. The main sources of water supply in the water circulation system in the Eastern Pangyo New Town is from two subway stations and runoff water, along with the natural water flowing from the mountains, rain water, and stream water. It was determined that more than 35,000 tons of water would be needed for the creation of water circulation system at the Eastern Pangyo. If the creation of infrastructure for the use of runoff and rain water as well as the periodic management can be provided, it can serve as the new model for a new city with water circulation system. In addition, since the Eastern Pangyo New Town water circulation system can secure enough amount of water resources, natural drainage system (NDS) in which it can be in dry condition in non-rainy days, is applied and connected to the typical waterways. Such water circulation system has many positive aspects including the wise use of water resources, and providing wild Life animals corridors and habitats. Also, the water circulation system can lead to the environmental education to the residents and visitors on environmental awareness of the water circulation system and their environment.

Isotopic Hydrograph Separation Using Artificial Rain-on-snow Experiments and Its Implications by Each Tracer (인공강우실험을 이용한 동위원소수문분리 및 각각의 추적자에 따른 의미)

  • Lee, Jeonghoon
    • Ocean and Polar Research
    • /
    • v.38 no.4
    • /
    • pp.331-338
    • /
    • 2016
  • Many studies using tracers have been conducted to understand a physical process in a system. Rain-on-snow could accelerate snowmelt processes, which influences the hydrological process in both temperate and polar regions. Hydrological and ecological conditions will be affected by the amount and timing of discharge reaching the bottom of a snowpack. The discharge consists of the rain-on-snow, pore water penetrating into the snowpack and natural meltwater. In this study, after a rain-on-snow experiment, we conducted an isotopic hydrograph separation to distinguish rainwater and pore water from meltwater. Using the isotopic data of snow and meltwater from Lee et al. (2010), two components were separated based on the assumption that rainwater and pore water are new water and natural meltwater is old water. After the second rain-on-snow experiment, the maximum contributions of rainwater and pore water reached up to 69% of the discharge and then decreased. During the study period, the measured total discharge was 4153 L and 40% (based on hydrogen isotope) of rainwater and pore water was calculated in the discharge, which is not consistent with what Lee et al. (2016) calculated using chemical separation (63%). This inconsistency can be explained by how an end-member was defined in both approaches. The contributions of artificial rainonsnow and pore water to melwater discharge range between the two methods. This study will suggest a mixing calculation from isotopic compositions of the Southern Ocean.