• 제목/요약/키워드: Rain analysis

검색결과 808건 처리시간 0.025초

SWAT 모형의 적용을 위한 적정 강우계밀도의 추정 (Optimal Rain Gauge Density and Sub-basin Size for SWAT Model Application)

  • 유철상;김경준;김남원
    • 한국수자원학회논문집
    • /
    • 제38권5호
    • /
    • pp.415-425
    • /
    • 2005
  • 본 연구에서는 준분포형 장기유출 모형인 SWAT(Soil and Water Assessment Tool)을 적용하는 경우 유출 결과의 정도를 확보하기 위한 강우계 밀도 및 소유역의 규모를 파악하였다. 다차원 강우모형인 WGR모형(Waymire 등, 1984)에 의하여 모의 발생된 강우를 SWAT모형을 통하여 유출해석한 후 다양한 소유역 규모 및 강우계 밀도에 대해 유출 오차를 분석하는 방법을 사용하였으며, 연구결과 대상유역인 용담댐 유역의 경우 적정 소유역의 평균면적 및 강우계 1개가 대표하는 면적의 적정규모는 모두 $80km^2$로 파악되었다.

중학생의 학업스트레스와 빗속의 사람그림 반응특성 (Relationship of Academic Stress in Middle School and PITR Responses)

  • 정의숙;김갑숙
    • 가정과삶의질연구
    • /
    • 제26권2호
    • /
    • pp.71-81
    • /
    • 2008
  • This study checks if the PITR (Person in the Rain) test can diagnose the stress caused by school-work for middle school students, in that the PITR responses correlates with the degree of stress. The subjects in the study are 483 middle school thirdgraders from 8 middle schools in Daegu city. Research tools used are an Academic Stress Scale and a PITR test. For data analysis is adopted with t-test and Chi-square test. The results from the study are as follows. First, the stress of middle students scores 2.47/4 that means that the school stress is average, and there is no gender difference in scores. Second, PITR test shows that boys draw more rain than girls, straight rain with stronger wind, hide face more, no good facial expressions more often than girls. Girls on the contrary show more stable lines, bigger puddles, place protections more appropriately. Third, those with higher academic stress use more unstable strokes, less number of or insufficient direct protections than those with less academic stress, and draw indirect protection such as umbrellas before rain or clouds. The study concludes that a PITR test can be useful in diagnosing the academic stress of middle school students.

Development of Empirical Formulas for Approximate Spectral Moment Based on Rain-Flow Counting Stress-Range Distribution

  • Jun, Seockhee;Park, Jun-Bum
    • 한국해양공학회지
    • /
    • 제35권4호
    • /
    • pp.257-265
    • /
    • 2021
  • Many studies have been performed to predict a reliable and accurate stress-range distribution and fatigue damage regarding the Gaussian wide-band stress response due to multi-peak waves and multiple dynamic loads. So far, most of the approximation models provide slightly inaccurate results in comparison with the rain-flow counting method as an exact solution. A step-by-step study was carried out to develop new approximate spectral moments that are close to the rain-flow counting moment, which can be used for the development of a fatigue damage model. Using the special parameters and bandwidth parameters, four kinds of parameter-based combinations were constructed and estimated using the R-squared values from regression analysis. Based on the results, four candidate empirical formulas were determined and compared with the rain-flow counting moment, probability density function, and root mean square (RMS) value for relative distance. The new approximate spectral moments were finally decided through comparison studies of eight response spectra. The new spectral moments presented in this study could play an important role in improving the accuracy of fatigue damage model development. The present study shows that the new approximate moment is a very important variable for the enhancement of Gaussian wide-band fatigue damage assessment.

KLAPS를 이용한 한반도 어는비 사례 연구 (Case Studies on Freezing Rain over the Korean Peninsula Using KLAPS)

  • 권희내;변희룡;박창균
    • 대기
    • /
    • 제25권3호
    • /
    • pp.389-405
    • /
    • 2015
  • In this study, the occurrence circumstances of 3 cases (12 Jan 2006, 11 Jan 2008, 22 Feb 2009) when the freezing rain was observed at more than two observatories in a day with more than three times each observatory, were investigated. Following the advanced study about the same cases, we have tried to find more delicate differences in using the Korea Local Analysis and Prediction System (KLAPS; 5 km reanalysis data) that has the smallest grid scale at current situation. As results, three common characteristics are found: (1) Just before the occurrence of the freezing rain, the wind direction was consistently continuous and the wind speed was constant or gradually increased for at least 3 hr more. (2) Surface air temperature (Relative humidity) was respectively $3.08^{\circ}C$ (28.76%), $0.47^{\circ}C$ (50.07%) and $-3.60^{\circ}C$ (71.07%) 3 hr ago to break out the freezing rain. It means the freezing rain occurs in a wide range of atmospheric environments. However, the closer it got to the occurrence time of the freezing rain, the closer the surface air temperature was to $0^{\circ}C$, and the bigger the humidity of the surface air was. (3) The liquid precipitation formed in the upper atmosphere, met a cold advection bellower than 950 hPa level and suspected to be changed to the super-cooled condition.

수치모델을 이용한 인공증우에 따른 PM10 저감효과 분석 (Analysis of PM10 Reduction Effects with Artificial Rain Enhancement Using Numerical Models)

  • 임윤규;김부요;장기호;차주완;이용희
    • 대기
    • /
    • 제32권4호
    • /
    • pp.341-351
    • /
    • 2022
  • Recently, interest in the possibility of a washout effect using artificial rain enhancement technology to reduce high-concentration fine dust is growing. Therefore, in this study, the reduction rate of PM10 concentration according to the amount of artificial rain enhancement was calculated during Asian Dust event which occurred over the Korean Peninsula on March 29, 2021 using air quality model [i.e., Community Multiscale Air Quality (CMAQ)] combined with the mesoscale model for artificial rain enhancement (i.e., WRF-MMS). According to WRF-MMS, the washout effect lasted 5 hours, and the maximum precipitation rate was calculated to be 1.5 mm hr-1. According the CMAQ results, the PM10 reduction rate was up to 22%, and the affected area was calculated to be 6.4 times greater than that of the artificial rain enhancement area. Even if the maximum amount of precipitation per hour is lowered to 0.8 mm hr-1 (about 50% level), the PM10 reduction rate appears to be up to 16%. In other words, it is believed that this technique can be used as a direct method for reducing high-concentration fine dust even when the artificial rain enhancement effect is weak.

LID 기법 적용에 의한 SCS-CN값 변화가 강우유출특성에 미치는 영향 분석 (The Analysis of Runoff Characteristics by Alterations of SCS-CN Value using LID Method)

  • 권준희;박인혁;하성룡
    • 환경영향평가
    • /
    • 제19권1호
    • /
    • pp.49-57
    • /
    • 2010
  • The objective of the research is to analyze changing trend of water discharge in precipitation, according to changing land use, through an environment-friendly urban development method called LID. The study chose S1 basin (Separated Sewer districts) in Cheongju region for survey. Among LID methods, relatively more applicable methods of green rooftop space and parking lot with permeable material were selected to construct plausible scenarios. Curve Number (CN) value was calculated due to land use patterns in each scenario, and SWMM model simulation were conducted during 2008 for comparative analysis. For Case 1, only parking lot with permeable material was applied to the scenario. Green rooftop space I and II were applied to Case 2 and 3 respectively. For Case 4 and 5, green rooftop space I and II were applied, in addition to parking lot with permeable material, Calculation of CN value showed that for S1 basin, the value was 88.1 (prior to scenario application), 86.5 (Case 1), 81.9 (Case 2), 68.5 (Case 3), 80.4 (Case 4) and 67.2 (Case 5). Changing pattern of rain water discharge was analyzed for each scenario. For Case 1, the change was not remarkable before and after application of scenario. In Case 2 and 4, the impact of rain water discharge as source of pollutant fell to 20~30%. The rate dropped to 30~50% in Case 3 and 5 respectively. The result demonstrates that the amount of rain water discharge, amount and frequency of sewer overflow, frequency of rain water discharge, and pollution load decreased in accordance with declining CN value in each scenario. In installing green rooftop space, the effect was twice greater when rain water discharge was directly infiltrated into soil.

2006년 인제군 집중호우의 원인 분석 (Cause Analysis of 2006 Concentrated Heavy Rain Which Occurred in InJe-Gun)

  • 배선학
    • 한국지역지리학회지
    • /
    • 제13권4호
    • /
    • pp.396-408
    • /
    • 2007
  • 2006년 인제와 평창에서 발생한 자연재해는 기상관측 이후 한반도에서 경험하지 못한 기상이변이 2000년대 이후 일반화되고 있음을 보여준다. 이에 따라 향후의 방재는 수시로 변화하는 재해의 특성과 원인을 분석하고 이를 가상의 공간에서 모델링한 후 다음해의 방재정책에 적용하여 피해를 최소화하는 방향으로 진행될 필요가 있다. 그리고 이러한 과정에 GIS가 활용된다면 합리적인 의사결정을 위한 최선의 정보를 제공받을 수 있을 것이다. 본 연구도 그러한 관점에서 진행되었다. 연구결과 2006년 7월 인제군에서 발생한 수해는 지형적인 요인과 장마전선, 그리고 태풍 빌리스의 영향에 의한 국지적 집중호우가 주요 원인이었다. 국지적인 집중호우에 의한 피해는 지형의 영향을 많이 받으며, 인제 군에서 발생한 수해 또한 비구름을 맞이하는 높은 산지에서 국지적인 집중호우가 발생한 것이 가장 큰 원인이었다.

  • PDF

Development of a novel fatigue damage model for Gaussian wide band stress responses using numerical approximation methods

  • Jun, Seock-Hee;Park, Jun-Bum
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.755-767
    • /
    • 2020
  • A significant development has been made on a new fatigue damage model applicable to Gaussian wide band stress response spectra using numerical approximation methods such as data processing, time simulation, and regression analysis. So far, most of the alternative approximate models provide slightly underestimated or overestimated damage results compared with the rain-flow counting distribution. A more reliable approximate model that can minimize the damage differences between exact and approximate solutions is required for the practical design of ships and offshore structures. The present paper provides a detailed description of the development process of a new fatigue damage model. Based on the principle of the Gaussian wide band model, this study aims to develop the best approximate fatigue damage model. To obtain highly accurate damage distributions, this study deals with some prominent research findings, i.e., the moment of rain-flow range distribution MRR(n), the special bandwidth parameter μk, the empirical closed form model consisting of four probability density functions, and the correction factor QC. Sequential prerequisite data processes, such as creation of various stress spectra, extraction of stress time history, and the rain-flow counting stress process, are conducted so that these research findings provide much better results. Through comparison studies, the proposed model shows more reliable and accurate damage distributions, very close to those of the rain-flow counting solution. Several significant achievements and findings obtained from this study are suggested. Further work is needed to apply the new developed model to crack growth prediction under a random stress process in view of the engineering critical assessment of offshore structures. The present developed formulation and procedure also need to be extended to non-Gaussian wide band processes.

울산대공원 조경공사의 각 세부공정이 전체공정율에 미치는 영향분석 (An Analysis of Influences on Partial Work Rates under the Whole Work Rates on the Landscape Constructions in the Ulsan Grand Park)

  • 성백진;이재근;최종희
    • 한국조경학회지
    • /
    • 제31권6호
    • /
    • pp.64-72
    • /
    • 2004
  • This study analyses influences on partial work rates under whole work rates on landscape constructions in Ulsan Grand Park. The schedule management is one of the factors that are very important to the process management of landscape construction. The time process of the whole construction is supposed to be affected by several kinds of work that organize the whole construction. First, this study divides the construction of Ulsan Grand Park into 10 kinds of works: earth work, rain and sanitary sewage water work, water-supplying work, planting work, paving work, water proofing work, fountain work, instituting work and temporary work. Then the time-process curves of all kinds of work are statistically compared to that of the whole construction. The trial methods of statistics are lineal regression, non-lineal regression, and principal analysis. In the result of the non-lineal regression, the rain and sanitary sewage water work, the water-supplying work and the earth work strongly affected the whole construction. The principal analysis results show that the whole construction is affected strongly by the water-supplying work, the rain and sanitary sewage water work and the earth work. However the lineal regression is shown to be senseless because of its high collinearity.

강수의 물리적 특성 이해를 위한 MRR 및 PASIVEL 우적계의 관측사례 분석 (Analysis of Observational Cases Measured by MRR and PARSIVEL Disdrometer for Understanding the Physical Characteristics of Precipitation)

  • 차주완;장기호;오성남;최영진;정진임;정재원;양하영;배진영;강선영
    • 대기
    • /
    • 제20권1호
    • /
    • pp.37-47
    • /
    • 2010
  • The methods measuring the precipitation drop size distribution(hereafter referred to as DSD) at Cloud Physics Observation System (CPOS) in Daegwallyeong are to use PARSIVEL (PARticle SIze and VELocity) disdrometer (hereafter referred to as PARSIVEL) and Micro Rain Radar (hereafter referred to as MRR). First of all, PARSIVEL and MRR give good correlation coefficients between their rain rates and those of rain gage: $R^2=0.93$ and 0.91, respectively. For the DSD, the rain rates are classified in 3 categories (Category 1: rr (Rain Rate) ${\leq}0.5\;mm\;h^{-1}$, Category 2: $0.5\;mm\;h^-1$ < rr < $4.0\;mm\;h^{-1}$, Category 3: rr ${\geq}4\;mm\;h^{-1}$). The shapes of PARSIVEL and MRR DSD are relatively most similar in category 2. In addition, we retrieve the vertical rain rate and liquid water content from MRR under melting layer, calculated by Cha et al's method, in Daegwallyeong ($37^{\circ}41{\prime}N$, $128^{\circ}45^{\prime}E$, 843 m ASL, mountain area) and Haenam ($34^{\circ}33^{\prime}N$, $126^{\circ}34^{\prime}E$, 4.6 m ASL, coast area). The vertical variations of rain rate and liquid water content in Daegwallyeong are smaller than those in Haenam. We think that this different vertical rain rate characteristic for both sites is due to the vertical different cloud type (convective and stratiform cloud seem dominant at Haenam and Daegwallyeong, respectively). This suggests that the statistical precipitation DSD model, for the application of weather radar and numerical simulation of precipitation processes, be considered differently for the region, which will be performed in near future.