• Title/Summary/Keyword: Rain Water Management

Search Result 173, Processing Time 0.041 seconds

Assessing Vulnerability to Climate Change of the Physical Infrastructure in Korea Through a Survey of Professionals (우리나라 사회기반시설의 기후변화 취약성 평가 - 전문가 설문조사를 바탕으로 -)

  • Myeong, Soojeong;Yi, Donggyu
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.347-357
    • /
    • 2009
  • This study conducted a vulnerability assessment on Korea's physical infrastructure to provide base data for developing strategies to strengthen Korea's ability to adapt to climate change. The assessment was conducted by surveying professionals in the field of infrastructure and climate change science. A vulnerability assessment was carried out for seven climate change events: average temperature increases, sea level rise, typhoons and storm surges, floods and heavy rain, drought, severe cold, and heat waves. The survey asked respondents questions with respect to the consequences of each climate change event, the urgency of adaptation to climate change, and the scale of investment for adaptation to each climate change event. Thereafter, management priorities for infrastructure were devised and implications for policy development were suggested. The results showed that respondents expected the possibility of "typhoons and storm surges" and "floods and heavy rain" to be the most high. Respondents indicated that infrastructure related to water, transportation, and the built environment were more vulnerable to climate change. The most vulnerable facilities included river related facilities such as dams and riverbanks in the "water" category and seaports and roads in the "transport and communication" category. The results found were consistent with the history of natural disasters in Korea.

Runoff Characteristics of Refractory Organic Matters from Kyongan River Watershed during Rainfall Event and Dry Season (경안천 유역의 강우 시, 비 강우 시 난분해성 유기물질 유출 특성)

  • Kim, Taewon;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.397-404
    • /
    • 2011
  • This research investigates the runoff characteristics of refractory organic matters from Kyongan river watershed. Samples were taken 27 times during dry season, 4 times during rain events and analyzed into flow rate, Dissolved Organic Carbon (DOC), Particulate Organic Carbon (POC), Refractory Dissolved Organic Carbon (R-DOC), Refractory Particulate Organic Carbon (R-POC). R-DOC during dry season was the lowest in winter and showed a rising tendency in spring and R-POC changes less than R-DOC. The mass loading of Refractory Total Organic Carbon (R-TOC) in summer takes approximately 80% of 1 year mass loading. During rainy season, EMC of R-DOC was similar to R-DOC in dry season. But maximum EMC of R-POC was 12 times higher than that of R-POC in dry season. Results of the survey show that enhanced management of R-DOC in dry season and R-POC in rainy season is needed.

Direct Runoff Reduction Analysis and Application Feasibility Evaluation of Vegetation-type Facilities (식생형시설의 직접유출량 저감 효과분석 및 적용 방법 타당성 검토)

  • Hanyong Lee;Won Hee Woo;Youn Shik Park
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.2
    • /
    • pp.69-77
    • /
    • 2024
  • As impervious area increases due to urbanization, rainfall on the impervious area does not infiltrate into the ground, and stormwater drains quickly. Low impact development (LID) practices have been suggested as alternatives to infiltrate and store water in soil layers. The practices in South Korea is applied to urban development projects, urban renewal projects, urban regeneration projects, etc., it is required to perform literature research, watershed survey, soil quality, etc. for the LID practices implementation. Prior to the LID implementation at fields, there is a need to simulate its' effect on watershed hydrology, and Storm Water Management Model (SWMM) provides an opportunity to simulate LID practices. The LIDs applied in South Korea are infiltration-based practices, vegetation-based practices, rainwater-harvesting practices, etc. Vegetation-based practices includes bio-retention cell and rain garden, bio-retention cells are mostly employed in the model, adjusting the model parameters to simulate various practices. The bio-retention cell requires inputs regarding surface layer, soil layer, and drain layer, but the inputs for the drain layer are applied without sufficient examination, while the model parameters or inputs are somewhat influential to the practice effects. Thus, the approach to simulate vegetation-based LID practices in SWMM uses was explored and suggested for better LID simulation in South Korea.

PREDICTION OF COMBINED SEWER OVERFLOWS CHARACTERIZED BY RUNOFF

  • Seo, Jeong-Mi;Cho, Yong-Kyun;Yu, Myong-Jin;Ahn, Seoung-Koo;Kim, Hyun-Ook
    • Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.62-70
    • /
    • 2005
  • Pollution loading of Combined Sewer Overflows (CSOs) is frequently over the capacity of a wastewater treatment plant (WWTP) receiving the water. The objectives of this study are to investigate water quality of CSOs in Anmyun-ueup, Tean province and to apply Storm Water Management Model to predict flow rate and water quality of the CSOs. The capacity of a local WWTP was also estimated according to rainfall duration and intensity. Eleven water quality parameters were analyzed to characterize overflows. SWMM model was applied to predict the flow rate and pollutant load of CSOs during rain event. Overall, profile of the flow and pollutant load predicted by the model well followed the observed data. Based on model prediction and observed data, CSOs frequently occurs in the study area, even with light precipitation or short rainfall duration. Model analysis also indicated that the local WWTP’s capacity was short to cover the CSOs.

Predicting the Design Rainfall for Target Years and Flood Safety Changes by City Type using Non-Stationary Frequency Analysis and Climate Change Scenario (기후변화시나리오와 비정상성 빈도분석을 이용한 도시유형별 목표연도 설계강우량 제시 및 치수안전도 변화 전망)

  • Jeung, Se-Jin;Kang, Dong-Ho;Kim, Byung-Sik
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.871-883
    • /
    • 2020
  • Due to recent heavy rain events, there are increasing demands for adapting infrastructure design, including drainage facilities in urban basins. Therefore, a clear definition of urban rainfall must be provided; however, currently, such a definition is unavailable. In this study, urban rainfall is defined as a rainfall event that has the potential to cause water-related disasters such as floods and landslides in urban areas. Moreover, based on design rainfall, these disasters are defined as those that causes excess design flooding due to certain rainfall events. These heavy rain scenarios require that the design of various urban rainfall facilities consider design rainfall in the target years of their life cycle, for disaster prevention. The average frequency of heavy rain in each region, inland and coastal areas, was analyzed through a frequency analysis of the highest annual rainfall in the past year. The potential change in future rainfall intensity changes the service level of the infrastructure related to hand-to-hand construction; therefore, the target year and design rainfall considering the climate change premium were presented. Finally, the change in dimensional safety according to the RCP8.5 climate change scenario was predicted.

Estimation of soil runoff and contribution in the mandae-cheun basin by the using RUSLE methood (RUSLE방법을 이용한 만대천유역의 토사유출량 및 기여울 산정)

  • Park, Soo-Jin;Choi, Han-Kuy;Kuk, Sung-Pyo;Lim, Yun-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.188-193
    • /
    • 2011
  • This study was intended to estimate the soil runoff at the basin of Mandaechun where the measure needs to be taken to deal with the increasing muddy water resulting from soil runoff during wet season and torrential rain at the high reaches of the Soyang lake where highland vegetables are cultivated and soil replacement for improvement is carried out every two to three years. The study was carried out in such a way of identifying the topographic factors using geographical spatial data from Water Management Information System (WAMIS) and ARC-VIEW program and estimating the soil runoff by rainfall frequency using Revised Universal Soil Loss Equation (RUSLE), and furthermore, evaluating the soil runoff contribution at the basin of Mandaechun based on estimate of the soil runoff by section.

  • PDF

Conservative Adjustment of the Standard Calculation Method of Inflow Water Into a Separated Sewer System (분류식 하수관로에서 유입수 표준매뉴얼 산정방법의 보수적 수정 결과)

  • Chu, Minkyeong;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.423-430
    • /
    • 2020
  • To improve the low treatment efficiency of sewage treatment plants, the separated sewer system must be maintained to provide an adequate flow rate and quality of the sewage under the effect of inflow. In this study, data from five locations of Namsuk, Dukgok1, Dukgok2, Kanggu, and Opo were used to conservatively calculate the inflow water volume. The sewer flow and rainfall data were collected in 2017. The factors in the standard method used to calculate the inflow of the combined sewer pipes including "rainy days", "rainfall impact period", and "period for basal sewer" were defined as 3 mm/day, continuous rain for two days, and two weeks prior to the inflow generation, respectively. "Rainy days", "rainfall impact period", and "period for basal sewer" were conservatively adjusted to 5 mm/day, continuous rain for five days, and three weeks prior to the inflow generation, respectively. As a results of the adjustment, the linearity (r2) was improved except for in Dukgok1. This implies that the conservative adjustment made in this study could improve the management quality of sewer pipes. Also, the linear correlation coefficient (ai) between inflow and rainfall showed a large difference between the target locations, which can be another monitoring factor affecting the quality of sewer pipes. To improve the correlation based on the individual characteristics of the locations in Korea, the automatic algorithm for the inflow calculation should be developed by innovative intellectual technologies for application to the entire national area.

Adjustment of Radar Precipitation Estimation Based on the Local Gauge Correction Method (국지 우량계 보정 방법을 이용한 레이더 강우 조정)

  • Kim, Kwang-Ho;Lee, Gyuwon;Kang, Dong-Hwan;Kwon, Byung-Hyuk;Han, Kun-Yeun
    • Journal of the Korean earth science society
    • /
    • v.35 no.2
    • /
    • pp.115-130
    • /
    • 2014
  • The growing possibility of the disaster due to severe weather calls for disaster prevention and water management measures in South Korea. In order to prevent a localized heavy rain from occurring, the rainfall must be observed and predicted quantitatively. In this study, we developed an adjustment algorithm to estimate the radar precipitation applying to the local gauge correction (LGC) method which uses geostatistical effective radius of errors of the radar precipitation. The effective radius was determined from the errors of radar rainfall using geostatistical method, and we adjusted radar precipitation for four heavy rainfall events based on the LGC method. Errors were decreased by about 40% and 60% in adjusted hourly rainfall accumulation and adjusted total rainfall accumulation for four heavy rainfall events, respectively. To estimate radar precipitation for localized heavy rain events in summer, therefore, we believe that it was appropriate for this study to use an adjustment algorithm, developed herein.

Characterization of Increases in Volumetric Water Content in Soil Slopes to Predict the Risk of Shallow Failure (토사비탈면 표층붕괴 위험 예측을 위한 체적함수비 증가 특성 연구)

  • Suk, Jae-Wook;Kang, Hyo-Sub;Choi, Sun-Gyu;Jeong, Hyang-Seon;Song, Hyo-Sung
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.485-496
    • /
    • 2020
  • The characteristics of volumetric water content changes in soil slopes were studied here in an effort to identify the signs of heavy rain causing shallow slope failure. Volumetric water contents in cases with and without shallow failure were measured in flume and test-bed experiments. Measurement data from 282 experiments of both types revealed that the volumetric water content gradient in shallow failure events ranged from 0.072 to 0.309. In non-failure cases, the range was 0.01~0.32. Therefore, this one specific value cannot predict shallow slope failure. However, as the volumetric water content gradient increased, there was a clear tendency to shallow failure. By using this trend, criteria for four warning levels are suggested.

Probabilistic Analysis of Drought Characteristics in Pakistan Using a Bivariate Copula Model

  • Jehanzaib, Muhammad;Kim, Ji Eun;Park, Ji Yeon;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.151-151
    • /
    • 2019
  • Because drought is a complex and stochastic phenomenon in nature, statistical approaches for drought assessment receive great attention for water resource planning and management. Generally drought characteristics such as severity, duration and intensity are modelled separately. This study aims to develop a relationship between drought characteristics using a bivariate copula model. To achieve the objective, we calculated the Standardized Precipitation Index (SPI) using rainfall data at 6 rain gauge stations for the period of 1961-1999 in Jehlum River Basin, Pakistan, and investigated the drought characteristics. Since there is a significant correlation between drought severity and duration, they are usually modeled using different marginal distributions and joint distribution function. Using exponential distribution for drought severity and log-logistic distribution for drought duration, the Galambos copula was recognized as best copula to model joint distribution of drought severity and duration based on the KS-statistic. Various return periods of drought were calculated to identify time interval of repeated drought events. The result of this study can provide useful information for effective water resource management and shows superiority against univariate drought analysis.

  • PDF