• Title/Summary/Keyword: Rain Radar

Search Result 188, Processing Time 0.029 seconds

Development of a New Vehicle Detector Combining CW Radar and Magnetometer Techniques (CW 레이다와 자계기술을 복합한 새로운 차량검지기 개발)

  • 정재영;김인석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.564-581
    • /
    • 1999
  • This paper introduces a new, small, low cost, robust and quick replaceable pavement-based vehicle detector using CW radar, magnetometer, and UHF small antennal techniques. The detector has been developed for a replacement of loop detectors having wide surface areas, for a more accurate operation under all weather conditions, and for no algorithmic change of the existing traffic information system. The detected vehicle information is sent by a small helical antenna embedded in a plastic material and received by a 5/8 $\lambda$ long GP antenna for signal processing. In a relatively good weather condition, the detector operates at 24 GHz. But in a heavy rain condition, magnetometer is activated by automatic switching.

  • PDF

A Skewed Doppler Spectrum Model in a Weather Radar (기상레이다에서의 비대칭 도플러 모델)

  • Lee, Jong-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.853-856
    • /
    • 2007
  • A weather radar extracts the weather information from the return echoes which consist of scattered electromagnetic wave signals from rain, cloud and dust particles, etc. The acquisition of accurate weather information depends on the operation environment which include the Doppler weather signal and ground clutter characteristics. Since the conventional symmetric weather Doppler model does not represent the measurements in real situations, the improved model is suggested to describe the skewness in the Doppler spectrum model. Using the suggested model, many various weather signals can be simulated to verify the accuracy of signal processing algorithms and the reliability of the extracted weather information

  • PDF

A Study on Improvement of Doppler Frequency Estimation Method in a Weather Radar (기상 레이다에서의 도플러 주파수 추정 방법 개선에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.1999-2005
    • /
    • 2015
  • A wind velocity is measured in a weather radar as well as the strength of return echoes from rain clouds. These wind velocities are obtained through estimation of Doppler frequencies in return signals. This kind of Doppler frequency estimation method is called as a correlation method. It is widely used in most weather radars because of less computation time. However, it may cause serious errors if a spectrum is not symmetric. Therefore, in this paper, it is shown that the improved method using 3rd order phase estimation model yields the more accurate estimation of the average Doppler frequency using various simulated weather data.

Quantification of error in polarimetric variables of rain radar and improvement of accuracy of radar rainfall (강우레이더의 편파변수 오차 정량화와 레이더 강우량 정확도 향상)

  • Yoon, Jungsoo;Hwang, Seokhwan;Kang, Narae;Oh, Byunghwa;Lee, Jeongha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.209-209
    • /
    • 2018
  • 국토교통부는 대하천에서의 홍수 감시를 위해 전국에 6기의 강우레이더를 도입 완료하였다. 비슬산레이더는 2009년에 맨 먼저 도입된 강우레이더로 국내 최초로 도입된 이중편파 S밴드 레이더이다. 이중편파레이더는 반사도 외에도 차등반사도, 차등위상차, 비차등위상차 등 다양한 레이더 편파변수들을 제공하고 있다. 이중 반사도, 차등반사도, 비차등위상차는 레이더 강수량 추정에 적용되는 편파변수들로 이 변수들에 오차가 내재 시 레이더 강우의 오차에 전파되게 된다. 이에 레이더 강우 추정에 적용되는 편파변수들에 내재되어 있는 오차를 정량화하고 제거하는 것은 레이더 강우 품질에 직결되는 문제이다. 본 연구에서는 2009년부터 2016년까지의 비슬산레이더로부터 관측된 총 351개의 강수사례를 수집하여 레이더 반사도와 차등반사도의 오차를 정량화 하였다. 그리고 이러한 편파변수들의 오차 제거시 레이더 강우량의 정확도가 어느 정도 향상되는 지를 확인하였다. 그 결과 레이더 강우량의 정확도는 편파변수 오차 제거 전에는 40 ~ 80% 범위에서 오차제거 후 60 ~ 80 % 범위로 정확도가 향상되었고 그 범위도 줄어들었다.

  • PDF

The Applicability of KIMSTORM for Flood Simulation Using Conditional Merging Method and Radar Rain Data (조건부 합성기법과 레이더 강우자료를 이용한 분포형 강우유출모형 KIMSTORM의 홍수모의 적용성 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.136-136
    • /
    • 2017
  • 본 연구의 목적은 이중편파 레이더 강우자료와 현재 실무에서 널이 이용되고 있는 레이더 강우보정 기법 적용에 따른 격자기반 분포형 강우-유출 모형인 KIMSTORM (KIneMatic wave STOrm Runoff Model)을 이용하여 유출해석을 수행하여 보정된 레이더 강우자료를 적용한 분포형 수문모형의 효율성을 검토하는데 있다. 남강댐 유역($2,293km^2$)을 대상으로 2014년 8월 태풍 이벤트(나크리), 2016년 10월 태풍 이벤트(차바)에 대하여 비슬산 레이더 강우자료를 사용하였다. 강우자료의 보정은 21개 지점 강우와 레이더 강우를 이용하여 조건부 합성 보정기법을 이용하였으며, 누적 강우량 그리고 면적 강우량 모두 관측치를 잘 재현함을 확인 할 수 있었다. $R^2$(coefficient of determination), ME (model efficiency), VCI (volume conservation index)를 이용하여 적용성을 평가하였다. 2016년 태풍 차바 이벤트에서의 유출 모형의 보정결과 조건부 합성 보정기법을 적용하기전 $R^2$, ME는 각각 0.75, 0.13으로 나타났고 조건부 합성 보정기법을 적용하였을 경우 각각 0.87, 0.82로 유출량 정확도가 크게 향상됨을 나타냈다. 다양한 국지성 집중호우 이벤트는 레이더 강우자료의 과대 및 과소추정을 유발하는 오차의 원인으로 조건부 합성 보정기법은 이러한 오차를 줄여 강우-유출 모형의 유출분석 결과 비교시 첨두유량 및 정량적인 면에서 실측 유량과 가깝게 모의되는 결과를 나타냈다.

  • PDF

Comparative Study of Deep Learning Model for Semantic Segmentation of Water System in SAR Images of KOMPSAT-5 (아리랑 5호 위성 영상에서 수계의 의미론적 분할을 위한 딥러닝 모델의 비교 연구)

  • Kim, Min-Ji;Kim, Seung Kyu;Lee, DoHoon;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.206-214
    • /
    • 2022
  • The way to measure the extent of damage from floods and droughts is to identify changes in the extent of water systems. In order to effectively grasp this at a glance, satellite images are used. KOMPSAT-5 uses Synthetic Aperture Radar (SAR) to capture images regardless of weather conditions such as clouds and rain. In this paper, various deep learning models are applied to perform semantic segmentation of the water system in this SAR image and the performance is compared. The models used are U-net, V-Net, U2-Net, UNet 3+, PSPNet, Deeplab-V3, Deeplab-V3+ and PAN. In addition, performance comparison was performed when the data was augmented by applying elastic deformation to the existing SAR image dataset. As a result, without data augmentation, U-Net was the best with IoU of 97.25% and pixel accuracy of 98.53%. In case of data augmentation, Deeplab-V3 showed IoU of 95.15% and V-Net showed the best pixel accuracy of 96.86%.

Enhancing the radar-based mean areal precipitation forecasts to improve urban flood predictions and uncertainty quantification

  • Nguyen, Duc Hai;Kwon, Hyun-Han;Yoon, Seong-Sim;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.123-123
    • /
    • 2020
  • The present study is aimed to correcting radar-based mean areal precipitation forecasts to improve urban flood predictions and uncertainty analysis of water levels contributed at each stage in the process. For this reason, a long short-term memory (LSTM) network is used to reproduce three-hour mean areal precipitation (MAP) forecasts from the quantitative precipitation forecasts (QPFs) of the McGill Algorithm for Precipitation nowcasting by Lagrangian Extrapolation (MAPLE). The Gangnam urban catchment located in Seoul, South Korea, was selected as a case study for the purpose. A database was established based on 24 heavy rainfall events, 22 grid points from the MAPLE system and the observed MAP values estimated from five ground rain gauges of KMA Automatic Weather System. The corrected MAP forecasts were input into the developed coupled 1D/2D model to predict water levels and relevant inundation areas. The results indicate the viability of the proposed framework for generating three-hour MAP forecasts and urban flooding predictions. For the analysis uncertainty contributions of the source related to the process, the Bayesian Markov Chain Monte Carlo (MCMC) using delayed rejection and adaptive metropolis algorithm is applied. For this purpose, the uncertainty contributions of the stages such as QPE input, QPF MAP source LSTM-corrected source, and MAP input and the coupled model is discussed.

  • PDF

Assessment of Radar AWS Rainrate for Streamflow Simulation on Ungauged Basin (미계측 유역의 유출모의를 위한 RAR 자료의 적용성 평가 연구)

  • Lee, Byong-Ju;Ko, Hye-Young;Chang, Ki-Ho;Choi, Young-Jean
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.9
    • /
    • pp.721-730
    • /
    • 2011
  • The objective of this study is to assess the availability of streamflow simulation using Radar-AWS Rain rate (RAR) data which is produced by KMA on real-time. Chuncheon dam upstream basin is selected as study area and total area is 4859.73 $km^2$. Mean Areal Precipitation (MAP) using AWS and RAR are calculated on 5 subbasin. The correlationship of hourly MAPs between AWS and RAR is weak on ungauged subbasins but that is relatively high on gauged ones. We evaluated the simulated discharge using the MAPs derived from two data types during flood season from 2006 to 2009. The simulated discharges using AWS on Chuncheon dam (gauged basin) are well fitted with measured ones. In some cases, however, discharges using AWS on Hwacheon dam and Pyeonghwa dam with some ungauged subbasins are overestimated on the other hand, ones using RAR in the same case are well fitted with measured ones. The hourly RAR data is useful for the real-time river forecast on the ungauged basin in view of the results.

Optimization of Z-R relationship in the summer of 2014 using a micro genetic algorithm (마이크로 유전알고리즘을 이용한 2014년 여름철 Z-R 관계식 최적화)

  • Lee, Yong Hee;Nam, Ji-Eun;Joo, Sangwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The Korea Meteorological Administration has operated the Automatic Weather Stations, of the average 13 km horizontal resolution, to observe rainfall. However, an additional RADAR network also has been operated in all-weather conditions, because AWS network could not observed rainfall over the sea. In general, the rain rate is obtained by estimating the relationship between the radar reflectivity (Z) and the rainfall (R). But this empirical relationship needs to be optimized on the rainfall over the Korean peninsula. This study was carried out to optimize the Z-R relationship in the summer of 2014 using a parallel Micro Genetic Algorithm. The optimized Z-R relationship, $Z=120R^{1.56}$, using a micro genetic algorithm was different from the various Z-R relationships that have been previously used. However, the landscape of the fitness function found in this study looked like a flat plateau. So there was a limit to the fine estimation including the complex development and decay processes of precipitation between the ground and an altitude of 1.5km.

Runoff assessment using radar rainfall and precipitation runoff modeling system model (레이더 강수량과 PRMS 모형을 이용한 유출량 평가)

  • Kim, Tae-Jeong;Kim, Sung-Hoon;Lee, Sung-Ho;Kim, Chang-Sung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.493-505
    • /
    • 2020
  • The rainfall-runoff model has been generally adopted to obtain a consistent runoff sequence with the use of the long-term ground-gauged based precipitation data. The Thiessen polygon is a commonly applied approach for estimating the mean areal rainfall from the ground-gauged precipitation by assigning weight based on the relative areas delineated by a polygon. However, spatial bias is likely to increase due to a sparse network of the rain gauge. This study aims to generate continuous runoff sequences with the mean areal rainfall obtained from radar rainfall estimates through a PRMS rainfall-runoff model. Here, the systematic error of radar rainfall is corrected by applying the G/R Ratio. The results showed that the estimated runoff using the corrected radar rainfall estimates are largely similar and comparable to that of the Thiessen. More importantly, one can expect that the mean areal rainfall obtained from the radar rainfall estimates are more desirable than that of the ground in terms of representing rainfall patterns in space, which in turn leads to significant improvement in the estimation of runoff.