• Title/Summary/Keyword: Railway axle

Search Result 136, Processing Time 0.027 seconds

Evaluation of Running Safety for Depressed Center Flat Car of 3-axle Bogie (3-축 대차 곡형평판차량의 주행안전성 평가)

  • Ham, Young-Sam;Seo, Jung-Won;Kwon, Seok-Jin;Lee, Dong-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.559-564
    • /
    • 2011
  • For the safety of railway, it should be evaluated for the running safety by measuring the derailment coefficient. Although railway has run the fixed and maintained rail, some of railway is derailed. This report shows the results that performed the static load test, main line running test on the basis of the derailment theory and experience. It is executed main line test into more than 90km/h for estimating the curving performance and running safety of depressed center flat car of 3-axle bogie. As the test results, could confirm the curving performance and running safety of depressed center fiat car of 3-axle bogie from the results of the wheel unloading, lateral force, derailment coefficient etc. Derailment coefficient was less than 0.6, and lateral force allowance limit and wheel load reduction ratio were enough safe.

Dynamic Analysis of Railway Vehicle Having Single Axle Bogie (1축 대차용 철도차량의 동특성 해석)

  • Yang, Hee-Joo;Oh, Taek-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.84-89
    • /
    • 2001
  • Studied in this paper was the vehicle dynamics simulation for development of single axle bogie using the multi-body dynamics simulation program(VAMPIRE). Single axle bogie vehicle is to the crew of freight vehicle. Method of analysis for dynamic behaviors of vehicle having single axle bogie was carried by UIC(International Union of Railways) code 518 and results of analysis were presented in terms of the hunting stability and the derailment ratio and the sum of wheel/rail lateral force. The results of analysis meet the criteria proposed by UIC.

  • PDF

A Study on Efficient Rolling Stock HBD Monitoring Method Using EWMA Technique (EWMA 기법을 적용한 효율적 철도차량 차축온도검지 모니터링 방법 연구)

  • Choi, Seog-Jung;Kim, Moon-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.609-617
    • /
    • 2017
  • Railways are one of the safest and most important transportation systems in the world. On the other hand, due to the increasing complexity of the railway system and the running distance of rail vehicles, railway accidents occur continuously every year. In particular, in the case of high-speed trains and freight trains, if the function of the axle bearing is lost due to abnormal overheating of the axle box bearing, the load on the axle becomes uneven. Therefore, abnormal overheating in the train axle box bearings can cause serious accidents or derailments. For this purpose, a Hot Box Detector (HBD) was installed in the track side of a high speed line to detect abnormal overheating. This paper proposes an EWMA technique-based axle temperature monitoring method to detect abnormal overheating quickly and efficiently. A statistical design of the proposed method was also performed. The proposed method has better performance compared to the current method in the case of abnormal overheating and the performance is improved by approximately 170% at the maximum.

A Study on the Turning Performance for the Bimodal Tram (바이모달 트램 선회성능에 관한 연구)

  • Moon, Kyeong-Ho;Lee, Kang-Won;Mok, Jai-Kyun;Chang, Se-Ky
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.301-306
    • /
    • 2011
  • The rear of the vehicle generally overhangs the rear axle. As a result, the rear of a vehicle swings to the outside of the rear axle(rear swing-out). In front steering vehicles, rear swing-out is not important because rear swing-out values measured outside the rear edge are relatively small. However, in the case of the bimodal tram with AWS(all wheel steering), the rear swing-out values increase because of the rear steering at a reverse phase angle. Off-tracking is defined as the radial offset between the path of the centerline of the front axle and the path of the centerline of the following axle. In this paper, in addition to determine the turning performance of bimodal tram with AWS, turning radius, swing-out, off-tracking and swept path width were also investigated.

  • PDF

Design of redundancy interface between TCMS and ATC system, and brake control of free-axle system (TCMS와 ATC장치간 인터페이스 이중계 구현 및 무축제동 제어방안)

  • Hong Gu-sun;Han Shin;Han Jeong-soo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1461-1466
    • /
    • 2004
  • Recently Domestic EMU's on board signal systems are gradually changed form Cab signal(Fix Block) to Distance-to-go. Interfaces with on board signal system, TCMS Redundancy structure is mainly required. This paper suggest Manaul/Automatic Driving based on TCMS-ATC interface and design of backup system which is operated by Stan-by Computer when one of it's Local Interface Unit(LIU) is out of oder. For the purpose of Precision Train Stop, Distance-to-go signal system require accuracy speed. Free-axle structure is required for this system This paper suggest Free-axle braking system that lack of brake-force is compensated by the distributed brake-force using TCMS. And one of braking system has out of order, compensation of brake-force for Free-axle system. Then we prove our design to Complete Car Test

  • PDF

Development of the All Wheel Steering ECU for Articulated Vehicle (굴절차량을 위한 전차륜 조향 시스템 전자제어 장치 개발)

  • Kim, Ki-Jeong;Chung, Ki-Hyun;Choi, Kyung-Hee;Lee, Soo-Ho;Park, Tae-Won;Moon, Kyeong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1231-1236
    • /
    • 2008
  • Since the bi-modal tram is too long so that the traditional steering system controlled only the first axle increases its turning radius, it is not suitable to the domestic road environment. In addition, it become hard to make fine parking with the traditional steering system. To resolve the problem, the bi-modal tram requires an all wheel steering system (AWS) that the second axle is controlled by the first axle's degree and the velocity of vehicle, and the third axle is steered by the articulation angle's degree and the velocity of degree. This paper addresses the factors for the AWS ECU design, the strategies to solve the problems, the core technologies for the implementation, and also the outcomes and analysis of the performance evaluation of implemented system.

  • PDF

A Study on the Dynamic Characteristics of the Bi-modal Tram with All-Wheel-Steering System (전차륜 조향 장치를 장착한 굴절궤도 차량의 주행특성에 관한 연구)

  • Lee, Soo-Ho;Moon, Kyung-Ho;Jeon, Young-Ho;Lee, Jung-Shik;Kim, Duk-Gie;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.444-450
    • /
    • 2007
  • The bi-modal tram guided by the magnetic guidance system has two car-bodies and three axles. Each axle of the vehicle has an independent suspension to lower the floor of the car and improve ride quality. The turning radius of the vehicle may increase as a consequence of the long wheel base. Therefore, the vehicle is equipped with the All-Wheel-Steering(AWS) system for safe driving on a curved road. Front and rear axles should be steered in opposite directions, which means a negative mode, to minimize the turning radius. On the other hand, they also should be steered in the same direction, which means a positive mode, for the stopping mode. Moreover, only the front axle is steered for stability of the vehicle upon high-speed driving. In summary, steering angles and directions of the each axle should be changed according to the driving environment and steering mode. This paper proposes an appropriate AWS control algorithm for stable driving of the bi-modal tram. Furthermore, a multi-body model of the vehicle is simulated to verify the suitability of the algorithm. This model can also analyze the different dynamic characteristics between 2WS and AWS.

Basic research to evaluate the vertical stresses and settlements on the subgrade (노반에 작용하는 수직응력 및 침하량에 관한 기초 연구)

  • Kim Dae-Sang;Lee Jin-Wuk;Lee Su-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1052-1057
    • /
    • 2004
  • Various amplitudes and frequencies of axle loads are applied to the domestic conventional line. Vertical stresses and settlements on the subgrade may be changed depending on the variation of axle loads. This paper introduces the research results to estimate vertical stresses and settlements on the subgrade with numerical analysis(Distinct Element Method), full scale test, and field test.

  • PDF

The Comparison of Running Performances between Various Steering-type Guideway Vehicles (조향방식 안내궤도 차량들의 주행 안정성 비교)

  • 윤성호
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.1
    • /
    • pp.18-25
    • /
    • 2002
  • This paper is to study a comparison of ride stabilities for the guideway vehicle between its three primary steering types; the front-rear wheel steering type, tile independent wheel steering and the front wheel steering. A numerical model were built to investigate various factors to have an influence on the vehicular stability. It was shown that dynamic stabilities of the three types were dependent on the steering gain ratio of front wheel steering to rear. The front-rear wheel steering type was more stable for the value of positive steering gains and the shorter distance between front axle and guide link showed better stabilities. On the contrary, the independent wheel steering was more stable for the value of negative gains and the longer distance between front axle and guide link showed better stabilities. Ride characteristics of he front wheel steering seemed to be found midway. Ride behaviors due to time delay from front steering to rear were very different from steering type to type.

Corrections to the conventional equations of motion of a wheel-axle set on a tangent track (직선 선로상 차륜-윤축에 대한 기존운동방정식의 수정)

  • Choi, Sung-Kyou
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.927-939
    • /
    • 2007
  • This paper concerns dynamics of a wheel-axle set on a tangent track which was already published in a book titled "Dynamics of Railway Vehicle Systems" authored by Garg and Dukkipati [1], pointing out several missing terms and erroneous parts in the derived expressions on the conventional governing equations of motion. It is indicated that the x-direction components of normal forces at left and right wheel-rail contact points in the equilibrium axis were missed. Another point is that in deriving the creepages the disturbed velocity components in both x and y directions in the equilibrium axis should not be disregarded in the first term of the numerators. When considering the creepage in the y direction in the body coordinate system, the second term of lateral velocity at the contact point also cannot be neglected. Besides, the hyper-assumptions in the final expressions of vertical components of normal forces at left and right wheel-rail contact points have been recovered in reaching the final stage of analytical model development. Finally it is noteworthy that the process of applying creep theory is deemed to contain a little bit inconsistencies and ambiguities to be clear.

  • PDF