• Title/Summary/Keyword: Railway Slope

Search Result 117, Processing Time 0.027 seconds

Variation of Slope Stability under rainfall considering Train Speed (열차의 속도 하중을 고려한 강우시 성토사면의 안정성 변화)

  • 김정기;김현기;박영곤;신민호;김수삼
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.601-607
    • /
    • 2002
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the stability of railway embankment and rainfall introducing the partial saturation concept of ground are defined to analyze the stability of embankment by rainfall. A pressure plate test is also peformed to obtain soil-water characteristic curve of unsaturated soils. Based on this curve, the variables in the shear strength function and permeability function are also defined. These functions are used fur the numerical model for evaluation of railway embankments under rainfall. As comparing the model and case studies, the variation of shear strength, the degree of saturation and pore-water pressure for railway embankment during rainfall can be predicted and the safety factor of railway embankment can be expressed as the function of rainfall amount namely rainfall index. Therefore, the research on safety factor on railway embankment considering train speed and rainfall infiltration with the variation of rainfall intensity and rainfall duration was carried out in this paper.

  • PDF

Deformation of Tunnel Affected by Adjacent Slope Excavation in a Joint Rock Mass (절리암반사면 굴착시 기존터널의 변형특성)

  • Lee, Jin-Wook;Lee, Sang-Duk
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.891-896
    • /
    • 2008
  • Behavior of the existing tunnel in the jointed rocks was affected by the adjacent slope excavation. In this study, large scale model tests were conducted. To investigate the tunnel distortion depending on the excavated slope angle and the joint dip of the ground performed model tests were numerically back analyzed. Consequently, as the joint dip and slope angle became larger, the tunnel distortion was tended to be larger. Ground displacement was also greatly dependent on the joint dip and the excavated slope angle, which indicated the possibility of the optimal slope reinforcement.

  • PDF

Stability analysis of a rock slope in Himalayas

  • Latha, Gali Madhavi;Garaga, Arunakumari
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.125-140
    • /
    • 2010
  • Slope stability analysis of the right abutment of a railway bridge proposed at about 350 m above the ground level, crossing a river and connecting two huge hillocks in the Himalayas, India is presented in this paper. The site is located in a highly active seismic zone. The rock slopes are intensely jointed and the joint spacing and orientation are varying at different locations. Static slope stability of the rock slope is studied using equivalent continuum approach through the most commonly used commercial numerical tools like FLAC and SLOPE/W of GEOSTUDIO. The factor of safety for the slope under static conditions was 1.88 and it was reduced by 46% with the application of earthquake loads in pseudo-static analysis. The results obtained from the slope stability analyses confirmed the global stability of the slope. However, it is very likely that there could be possibility of wedge failures at some of the pier locations. This paper also presents the results from kinematics of right abutment slope for the wedge failure analysis based on stereographic projections. Based on the kinematics, it is recommended to flatten the slope from 50o to 43o to avoid wedge failures at all pier locations.

An Experimental Study on the Critical Velocity Considering the Slope in Tunnel Fire (경사터널내 화재 발생시 경사도가 임계속도에 미치는 영향에 관한 연구)

  • Kim, Seung-Ryoul;Jang, Yong-Jun;Ryou, Hong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • An experimental study has been conducted to investigate the effect of tunnel slope on critical velocity by using the model funnel of the 1/20 reduced-scale applying the Floods scaling law. the square liquid pool burners were used for methanol, acetone and n-heptane fires. tunnel. Tunnel slopes varied as five different degrees $0^{\circ}$, $2^{\circ}$, $4^{\circ}$, $6^{\circ}$ and $8^{\circ}$. The mass loss rate and the temperatures are measured by a load celt and K-type thermocouples for tunnel slope. Present study results in bigger the critical velocity than the research of Atikinson and Wu using the propane burner. Therefore, when estimating the critical velocity in slope tunnel, the variations of the heat release rate is an important factor. The reason is the ventilation velocity directly affects variation of heat release rate when slope tunnel fire occurred.

Analysis of the Safety Factor of Railway Slopes when Rapid Hardening Composite Mat are Applied (초속경 복합매트 적용 시 철도 비탈면 안전율 분석)

  • Seongmin Jang;Jinseong Park;Taehee Kang;Hyuksang Jung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.5
    • /
    • pp.21-28
    • /
    • 2023
  • In this paper, an experimental study was conducted to present the properties of rapid hardening composite mat, and a numerical analysis was carried out to analyze the slope protection effect of the mats based on ground conditions, rainfall, slope gradient and soil height. As a result, the application of rapid hardening composite mat increased the slope safety factor in all conditions, and the increase rate of safety factor showed an average of 40% increase both in dry and rainy seasons. Through these research findings, the protective effect of the rapid hardening composite mat on sloping surfaces has been proven, and it is suggested that the rapid hardening composite mat is suitable for application in areas where slope failure or collapse is expected.

Strength characteristic transformation of weathered soil caused by freezing-thawing (동결 -융해에 따른 풍화토의 강도특성 변화)

  • 김수삼;박영목;정승용;김용수
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.520-525
    • /
    • 2001
  • It's strongly recommended to check upon the slope stability of soil nearby railroad, since the freezing-thawing repeat in long term may cause decrease of slope stability. The study is, therefore, focused on the strength characteristic transformation of soil, measuring it experimentally, throughout physical and mechanical tests operated by the freezing-thawing repeat tests. The sampling of weathered soil used for the embankment materials along the domestic railway lines are classified by parent-rock, and then collected after it in the first hand. It tells that Uniaxial strength and axial strain were decreased simultaneously as the frequency of freezing-thawing repeat increased and its range was reduced into 25~85 percentage off comparing to uniaxial strength of unfreezing-soils when about 100 times of freezing-thawing repeats occurred. Following the result of direct shear tests, the cohesion of freezing-soil with freezing-thawing repeats shows 11∼60 percentage less than that of unfreezing-soil but the change of internal friction angle of the soil is extremely slight, enough to ignore. As a result. it could be found that strength characteristic transformation has highly correlated with freezing-thawing repeat.

  • PDF

Manufacture and operation of test facilities for energy regenerating system (회생제동 인버터 시험설비의 제작 및 시험)

  • Yang, Young-Chul;Park, Jong-Phil;Han, Moon-Sub;Kim, Ju-Rak;Kim, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.852-857
    • /
    • 2007
  • For electric traction using a large power converter, harmonic problem in the p-ower quality and regenerating energy in side of efficiency are important. Recently, by advance in power electronics technology, some countries are considering regenerative inverter from the points of view. when the electric tractions are stopped or driven through the falling slope way, it is very useful to supply surplus energy to the power source by regenerating system in the efficient side of energy and it is very economical. these regenerating energy are supported electrical equipment through DC line. In this research, the purposes are suppressing extra DC-line voltage and saving energy generated while electric traction is been driving on the falling slope way or reducing speed for railway using a 1500V DC-voltage. Besides, the accompanied defects of current distortion, low power factor and the voltage unbalance will be solved by developing the algorism of inverter having ability to compensate current harmonic.

  • PDF

A Study of the Application of Digital Photogrammetry to Railroad Rock Slope Investigation System (디지털 사진측량의 철도 암사면 조사시스템 적용에 관한 연구)

  • Ahn, Tae-Bong
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.548-556
    • /
    • 2009
  • In order to evaluate applicability of rock cut-slope investigation system, typical clinometer and photogrammetry investigation system were used for rock slopes; first for 7 discontinuities, and secondly, 10 discontinuities, and the results were compared. The first verification was performed depending on discontinuity joint shapes and slope angles, and the second verification was performed depending on shot time and shot locations. The results showed that differences of dip direction $1^{\circ}{\sim}4^{\circ}$, dip $0^{\circ}{\sim}4^{\circ}$. In the second verification test, the differences of dip direction was $0^{\circ}{\sim}6^{\circ}$, and dip $0^{\circ}{\sim}6^{\circ}$. The photogrammetry method for rock slope survey system is quite reliable when clinometer generally shows ${\pm}10^{\circ}$ errors due to surface roughness and investigator.

Slope Stability Analysis under Rainfall Condition by Using Multiple Slip Surfaces (다중 파괴면을 이용한 강우시 사면의 안정성 해석)

  • Kim, Minseok;Sagong, Myung;Kim, Soosam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.11-18
    • /
    • 2007
  • Slope failure triggered by rainfall produces severe effects on the serviceability and stability of railway, Therefore, slope stability problem is one of the major concerns on the operation of railway. In this study, the rainfall conditions triggering slopes failure adjacent to railroads are investigated and the numerical analysis approach in consideration of infiltration and limit equilibrium method based upon multiple slip surfaces are proposed. The rainfall conditions triggering slope failure are as follow: cumulative rainfall is in the range of 150~500 mm, and duration is from 3 to 24 hours. Base upon the rainfall conditions, infiltration analysis and limit equilibrium method for infinite slope condition are carried out. The depth of infinite slope is assumed as 2 m and the multiple slip surfaces modeled with 16.7 cm interval from the bottom slip surface located at the 2 m depth. The assumed bottom slip surface is the location at which factor of safety is converging. The proposed approach shows more reasonable results than the results from the general codes assuming water table at slope surface. In addition, three dimensional plot of cumulative rainfall, rainfall duration, and factor of safety shows that slope stability analysis in consideration of rainfalll must account for cumulative rainfall (rainfall duration).

  • PDF

Review of international wind codes and recent research on mono-slope canopy roof

  • Pratap, Ajay;Rani, Neelam
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.371-383
    • /
    • 2022
  • Buildings with mono-sloped roofs are used for different purposes like at railway platforms, restaurants, industrial buildings, etc. Between two types of mono-slope roofs, clad and unclad, unclad canopy types are more vulnerable to wind load as wind produces pressure on both upper and lower surfaces of the roof, resulting in uplifting of the roof surface. This paper discusses the provisions of wind loads in different codes and standards for Low-rise buildings. Further, the pressure coefficients on mono-slope canopy roof available in wind code and standards are compared. Previous experimental studies for mono-slope canopy roof along with the recent wind tunnel testing carried out at Indian Institute of Technology, Roorkee is briefly discussed and compared with the available wind codes. From the study it can further be asserted that the information available related to staging or blocking under the mono-slope canopy roofs is limited. This paper is an attempt to put together the available information in different wind codes/standards and the research works carried out by different researchers, along with shedding some light on the future scopes of research on mono-slope canopy roofs.