• Title/Summary/Keyword: Railway Boom

Search Result 6, Processing Time 0.055 seconds

Railway Boom and the Emergence of Mechanical Engineers in England ("철도붐"과 영국 기계 엔지니어의 사회적 등장)

  • Lee, Eun-Kyoung
    • Journal of Engineering Education Research
    • /
    • v.14 no.5
    • /
    • pp.46-52
    • /
    • 2011
  • This paper examines the emergence of mechanical engineers in the technological and social context of professionalization in England. Despite their technological progress, most steam engine wrights and machine tool builders were individual workshop owners working to order in the early 19th century. In the 1830s and 1840s, however, the railway boom produced so called railway engineers by providing them with some managerial experience as the canal building did in civil engineering. Railway engineers played a dominant role to establish the Institute of Mechanical Engineers(IME) in 1848. It was IME that stated what is a mechanical engineer and helped its members be in the similitude of the civil engineers in social and technological activities.

Measurement and prediction of sonic boom by high speed train at the tunnel exit (고속 전철에 의한 터널 출구에서의 충격성 소음(소닉붐)의 예측 및 실험적 연구)

  • 이수갑;윤태석;정원태;이동호;김동현;강신재
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.369-378
    • /
    • 1998
  • When a high-speed train enters a tunnel, a compression wave is generated ahead of the train and propagates along the tunnel. This wave subsequently emerges form the exit portal of the tunnel, which causes an impulsive noise. In the present study, experimental investigation is carried out on the sonic boom noise with parameters of train speed, blockage ratio, nose shape of train and airshaft. These experimental results show that several countermeasures could be used to efficiently reduce the sonic boom. In addition, numerical analysis is performed to predict the sonic boom. The predicted sound waves are in a good agreement with the experimental results.

  • PDF

Passive control of unsteady compression wave using vertical bleed ducts (수직갱을 이용한 터널내 비정상 압축파의 피동제어)

  • Kim, Hui-Dong;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1095-1104
    • /
    • 1997
  • When a high-speed railway train enters a tunnel, a compression wave is generated ahead of the train and propagates along the tunnel, compressing and accelerating the rest air in front of the wave. At the exit of the tunnel, an impulsive wave is emitted outward toward the surrounding, which causes a positive impulsive noise like a kind of sonic boom produced by a supersonic aircraft. With the advent of high-speed train, such an impulsive noise can be large enough to cause the noise problem, unless some attempts are made to alleviate its pressure levels. For the purpose of the impulsive noise reduction, the present study investigated the effect of a vertical bleed duct on the compression wave propagating into a model tunnel. Numerical results were obtained using a Piecewise Linear Method and testified by experiment of shock tube with an open end. The results showed that the vertical bleed duct reduces the maximum pressure gradient of compression wave front by about 30 percent, compared with the straight tunnel without the bleed duct. As the width of the vertical bleed duct becomes larger, reduction of the impulsive noise is expected to be greater. However the impulsive noise is independent of the height of the vertical bleed duct.

Experimental study of compression waves propagating porous walls (다공벽을 전파하는 압축파의 실험적 연구)

  • Kim, Hui-Dong;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4036-4043
    • /
    • 1996
  • When a high-speed railway train enters a tunnel, a compression wave is generated ahead of the train and propagates along the tunnel, compressing and accelerating the rest air in front of the wave. At the exit of the tunnel, an impulsive wave is emitted outward toward the surrounding, which causes a positive impulsive noise like a kind of sonic boom produced by a supersonic aircraft. With the advent of high-speed train, such an impulsive noise can be large enough to cause the noise problem, unless some attempts are made to alleviate its pressure levels. In the purpose of the impulsive noise reduction, the present study tested the effect of porous walls on the compression wave propagating into a model tunnel. Experimental results were obtained using a shock tube with an open end. The results showed that the cavity/porous wall is very effective for the compression wave with a large nonlinear effect. The porosity of 30% is most effective for attenuation and pressure gradient reduction of the compression wave front. Also the impulsive noise reduction increases with increasing the length and height of the cavity, compared with the tunnel equivalent diameter.

Numerical Study of Compression Waves Propagating Through Porous Walls (다공벽을 전파하는 압축파에 관한 수치해석적 연구)

  • Kim, Hui-Dong;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1403-1412
    • /
    • 1997
  • When a high-speed railway train enters a tunnel, a compression wave is generated ahead of the train and propagates through the tunnel, compressing and accelerating the rest air in front of the wave. At the exit of the tunnel, an impulsive wave is emitted outward toward the surrounding, which causes a positive impulsive noise like a kind of sonic boom produced by a supersonic aircraft. With the advent of high-speed train, such an impulsive noise can be large enough to cause the noise problem, unless some attempts are made to alleviate its pressure levels. In the purpose of the impulsive noise reduction, the present study calculated the effect of porous walls on the compression wave propagating into a model tunnel. Two-dimensional unsteady compressible equations were differenced by using a Piecewise Linear Method. Calculation results show that the cavity/porous wall system is very effective for a compression wave with a large nonlinear effect. The porosity of 30% is most effective for the reduction of the maximum pressure gradient of the compression wave front. The present calculation results are in a good agreement with experimental ones obtained previously.

Damage Analysis of Thin Steel Members with Bolt Connection Using Lamb Wave and PZT Element (Lamb파 전달을 이용한 볼트 연결된 얇은 강판부재의 손상해석)

  • Rhee, Inkyu;Kwak, Hyo-Gyoung;Kim, Jae Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.587-596
    • /
    • 2006
  • A half portion of Korean railway bridges depends on the type of steel plate girder bridge. Since these bridges have been built in the early stage of Korean economical boom, numerous maintenance effort suffers from aging and progressive degradation issues at present. In accordance with these efforts, this paper would like to address the detailed analyses of thin steel plates with bolts in order to simulate the connection regions of steel plate girder bridge. The fundamental modal analysis, transient dynamic analysis with 3D piezoelectric element in open circuit loop and signal process with aids of TOF(time of flight) and WC(wavelet coefficient) are extensively discussed.