• Title/Summary/Keyword: Railroad electricity

Search Result 75, Processing Time 0.025 seconds

Development and Performance Test of DC Smart Metering System for the DC Power Measurement of Urban Railway (도시철도 직류 전력량 계측을 위한 직류용 스마트미터링 시스템 개발 및 성능시험)

  • Jung, Hosung;Shin, Seongkuen;Kim, Hyungchul;Park, Jongyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.713-718
    • /
    • 2014
  • DC urban railway power system consists of DC power network and AC power network. The DC power network supplies electric power to railway vehicles and the AC power network supplies electric power to station electric equipment. Recently, because of power consumption reduction and peak load shaving, intelligent measurement of regenerative energy and renewable energy adapted on DC urban railway is required. For this reason, DC smart metering system for DC power network shall be developed. Therefore, in this paper, DC voltage sensor, current sensor, and DC smart meter were developed and evaluated by performance test. DC voltage sensor was developed for measuring standard voltage range of DC urban railway, and DC current sensor was developed as hall effect split core type in order to install in existing system. DC smart meter possesses function of general intelligent electric power meter, such as measuring electricity and wireless communication etc. And, DC voltage sensor showed average 0.17% of measuring error for 2,000V/50mA, and current sensor showed average 0.21% of measuring error for ${\pm}2,000V/{\pm}4V$ in performance test. Also DC smart meter showed maximum 0.92% of measuring error for output of voltage sensor and current sensor. In similar environment for real DC power network, measuring error rate was under 0.5%. In conclusion, accuracy of DC smart metering system was confirmed by performance test, and more detailed performance will be verified by further real operation DC urban railway line test.

Feed System Modeling of Railroad using Fuel Cell Power Generation System (연료전지 발전시스템을 이용한 철도급전계통 모델링)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.195-200
    • /
    • 2020
  • With the growing interest in fossil fuel depletion and environmental pollution, railroad cars operating in Korea are in progress as the conversion from diesel to electric vehicles expands. The photovoltaic system, which is applied as an example of the conversion of electric vehicles, is infinite and pollution-free, and can produce energy without generating hazards such as air pollution, noise, heat, and vibration, and maintain fuel transportation and power generation facilities. There is an advantage that is rarely needed. However, the amount of electricity produced depends on the amount of solar radiation by region, and the energy density is low due to the power generation of about 25㎡/ kWp, so a large installation area is required and the installation place has limited problems. In view of these problems, many studies have been applied to fuel cells in the railway field. In particular, the plan to link the fuel cell power generation system railroad power supply system must be linked to the power supply system that supplies power to the railroad, unlike solar and wind power. Therefore, it has a close relationship with railroad cars and the linkage method can vary greatly depending on the system topology. Therefore, in this paper, we study the validity through simulation modeling related to linkage analysis according to system topology.

A Study on a Substation Static Load Model Including the Mobility of a Railway Load (철도 부하의 이동성을 반영한 변전소 정태부하모델링 수립에 대한 연구)

  • Chang, Sang-Hoon;Youn, Seok-Min;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.315-323
    • /
    • 2015
  • Nowadays, it is expected that mobility loads such as electric railways and electric vehicles will be penetrated gradually and affect on the power system stability by their load characteristics. Various researches have been carried out about electric vehicles for the recent decade though the load of electric railway could be forecasted because of the specified path and timetable, is a field with a long historic background. Some precise 5th polynomial equations are required to analyze the power system stability considering mobility load to be increased in the immediate future while the electric railway dispatching simulator uses load models with constant power and constant impedance for the system analysis. In this paper, seasonal urban railway load models are established as the form of 5th polynomial equations and substation load modeling methods are proposed merging railway station load models and general load models. Additionally, load management effects by the load modeling are confirmed through the case studies, in which seasonal load models are developed for Seoul Subway Line No. 2, Gyeongui Line and Airport Railroad and the substation load change is analyzed according to the railway load change.

Optimal Operation of Battery Energy Storage System for Customers using the MPDP (MPDP를 이용한 수용가측 전지전력저장시스템의 최적운전)

  • Hong, Jong-Seok;Kim, Jae-Chul;Choi, Joon-Ho;Jung, Yong-Chul;Kim, Tae-Su;Kim, Eung-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.315-317
    • /
    • 2001
  • This paper studies for the optimal operation of BESS. The goal must be optimized electricity charge of the customer sides owned time-of-use rates in this paper. Therefore, the least of cost is caused by BESS installation, Multi-Pass Dynamic Programming (MPDP) algorithm is applied to the customer for the optimal operation determination in this paper. It is to solve the optimal solution under the constraints. No matter how become one stage in general, problem is divided into several stage in series in this algorithm. Regardless of the decision step, MPDP is only accomplished based on the state of stage in the present. To investigate the efficiencies of the algorithm, it is applied the typical load curve to the cutomer owned Time-Of-Use(TOU). Result shows that the maximun economic benefits of the battery energy storage system can be achieved by the purposed algorithm.

  • PDF

Calculation Method of Modification Factors for Fault Location Algorithm Using Boosting Current of Operating Electric Train in AT Feeding System (AT급전계통에서 실제 운행 중인 전기기관차 부하를 이용한 고장점 표정 알고리즘 보정계수 산출 방법)

  • Kim, Cheol-Hwan;Kim, Sung-Ryul;Kwon, Sung-Il;Cho, Gyu-Jung;Kim, Chul-Hwan;Song, In-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.504-510
    • /
    • 2016
  • In general, a fault locator is installed in Sub-Station of AT(Auto-transformer) feeding system to estimate the fault location and to protect the Korean AT feeding system. Since the line impedance characteristic is different to normal 3-phase transmission line, we need particular modification factors, which can be calculated using fault location recording data, to estimate the accurate fault location. Up to recently, forcible ground test has been used to calculate the modification factors of the fault locator. However, large amount of current is occurred when the forcible ground test is performed, and this current affects to adjacent equipments. Therefore, we proposed a novel calculation method of modification factors, arbitrary trip test, using boosting current of the operating electric train. Through several field test, we confirmed that modification factors for fault locator can be easily calculated by using proposed method. Moreover, we verified the accuracy and stability of the proposed calculation method.

Analysis of Overhead Rigid Conductor Line for the Subway tunnel section (지하철 터널 구간 강체가선 방식의 특성분석)

  • Yim Geum-Kwang;Chang Sang-Hoon;Kim Wang-Gon
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.493-499
    • /
    • 2003
  • Railroad, a superior mode of public transportation provides safe, efficient, speedy, comfortable and economical service, has fundamentally different characteristics from airplanes, ships and cars. Among the unique characteristics of a railroad is the fact that it operates on fixed track with multiple car trains. The subway system was first selected as the best solution to difficult automobile traffic conditions and environmental problems. Seoul subway no.1line (Jongno line) was opened for service on August 15, 1974. Seoul city has completed and now operates eight subway lines (286.7km) since 1974. At present the subways operate in Busan, Daegu and Incheon city, and are under construction in Gwangju and Daejeon city. The power source for subway trains has been electricity since 1896, and power supply systems are the third rail type and/or the catenary system. The typical catenary system is the rigid bar type. R-bar and T-bar are used in the rigid bar type of catenary system, and the two types of R-bar and T-bar are uesd in Korea also. R-bar is used only for AC 25kV power supply and T-bar for DC 1,500V. From 30 years of subway experience I would like to suggest the most economic catenary system to ensure of safety, reliability and expediency for the railway lines to be constructed and the forthcoming replacement due to the life cycle after studying and analysing the characteristics, advantages and disadvantages of R-bar and T-bar.

  • PDF

A Basic Experimental Study on Noise Energy Harvesting for Green Infrastructure (녹색사회기반시설의 소음에너지 하베스팅을 위한 기초실험 연구)

  • Jo, Byung-Wan;Kim, Hyun-Sik;Kim, Kyung-Tae;Yoon, Kwang-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.559-565
    • /
    • 2010
  • In this study we propose noise energy harvesting for green infrastructure development. In this regard, infrastructures such as railroad, subway, and road are taken into consideration as sources of noise which provides energy through certain wave forms. As the need of recycling noise energy became reasonable due to the increase of infrastructure usage, the capacity and property of our noise energy generating device, which uses electromagnetic induction for electricity generation, are analysed in this paper. Consequently, the outcomes of this experiment show the fact that maximum electricity is generated from the device at a specific point of noise frequency, and the relation between air pressure caused by noise and the electricity generated by the device is in a specific proportional form either linear or non-linear. The major points of developing noise energy generating device in order to apply it into social infrastructure are discussed in this paper as well.

Bending Fatigue Life Evaluation of Pure Copper and Copper Alloy Contact Wire (동 전차선(Cu) 및 동합금 전차선(CuSn)의 굽힘피로 수명 평가)

  • Kim, Yongseok;Li, Haochuang;Kang, Minsung;Koo, Jae-Mean;Seok, Chang-Sung;Lee, Kiwon;Kwon, Sam-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1346-1350
    • /
    • 2012
  • Contact wire is one of the most important components supplying electricity to railroad cars. At the beginning of the research on contact wire, wear problem caused by friction between contact wire and pantograph was considered even more important issue for the failure of contact wire. However, since several fatigue fractures were reported from Shinkansen in Japan, fatigue fracture has become another important issue for the failure of contact wire. Despite of its importance, standard of the fatigue test of contact wire has not been established yet. Thus, fatigue characteristics of contact wire is very difficult issue to evaluate quantitatively. Hence, in this study, test method simulating operating conditions of contact wire by Minsung Kang and etc. is used to evaluate the fatigue characteristics of copper alloy contact wire. Also, test results is compared with the result of Minsung Kang's research on pure copper contact wire.

A Methodology of Dual Gate MOSFET Dosimeter with Compensated Temperature Sensitivity

  • Lho, Young-Hwan
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.143-148
    • /
    • 2011
  • MOS (Metal-Oxide Semconductor) devices among the most sensistive of all semiconductors to radiation, in particular ionizing radiation, showing much change even after a relatively low dose. The necessity of a radiation dosimeter robust enough for the working environment has increased in the fields of aerospace, radio-therapy, atomic power plant facilities, and other places where radiation exists. The power MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) has been tested for use as a gamma radiation dosimeter by measuring the variation of threshold voltage based on the quantity of dose, and a maximum total dose of 30 krad exposed to a $^{60}Co$ ${\gamma}$-radiation source, which is sensitive to environment parameters such as temperature. The gate oxide structures give the main influence on the changes in the electrical characteristics affected by irradiation. The variation of threshold voltage on the operating temperature has caused errors, and needs calibration. These effects can be overcome by adjusting gate oxide thickness and implanting impurity at the surface of well region in MOSFET.

A Study on the Design of a Pulse-Width Modulation DC/DC Power Converter

  • Lho, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.201-205
    • /
    • 2010
  • DC/DC Switching power converters are commonly used to generate regulated DC output voltages with high-power efficiencies from different DC input sources. A switching converter utilizes one or more energy storage elements such as capacitors, or transformers to efficiently transfer energy from the input to the output at periodic intervals. The fundamental boost converter studied here consists of a power metal-oxide semiconductor field effect transistor switch, an inductor, a capacitor, a diode, and a pulse-width modulation circuit with oscillator, amplifier, and comparator. A buck converter containing a switched-mode power supply is also studied. In this paper, the electrical characteristics of DC/DC power converters are simulated by simulation program with integrated circuit emphasis (SPICE). Furthermore, power efficiency was analyzed based on the specifications of each component.