• 제목/요약/키워드: Rail-to-rail

검색결과 3,389건 처리시간 0.03초

Wheel/Rail Adhesion for Improvement of Braking Performance (철도차량의 제동성능 향상을 위한 점착현상에 관한 연구)

  • 전규찬;황동환;김대은
    • Tribology and Lubricants
    • /
    • 제13권2호
    • /
    • pp.68-73
    • /
    • 1997
  • The adhesion between wheel and rail plays an important role in the braking performance of trains. Though there have been numerous studies on the characteristics of adhesion phenomenon, a general understanding from the physical point of view is still lacking. In this work, the adhesion mechanism between wheel and rail was investigated by studying the mechanisms of pure rolling and sliding experiments. Tests were performed under various conditions to determine the physical phenomenon responsible for adhesion between wheel and rail. The results of this study is expected to aid in improving the braking performance of trains.

A Scientometric and Meta-analysis of Rail Infrastructure in Nigeria

  • Awodele, Imoleayo Abraham;Mewomo, Modupe Cecilia
    • International conference on construction engineering and project management
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.960-966
    • /
    • 2022
  • Mobility is an essential human need. Human survival and societal interaction depend on the ability to move people and goods. Efficient mobility systems are essential facilitators of economic development. Cities could not exist and global trade could not occur without systems to transport people and goods cheaply and efficiently. Rail has been considered as one of the important components of the transportation infrastructure required to service and improve the performance and productivity of an economy. In Nigeria, the rail infrastructure built by the colonial master several decades ago has been left in a state of total deterioration. This long neglect was occasioned by the failure of the government to pay adequate attention to infrastructure development. There is a vital and urgent need for rail infrastructure development in Nigeria. This study presents a systematic review of the evolution of rail, the current nature of railway infrastructure delivery in Nigeria, and offers possible suggestions on how to achieve an effective and sustainable rail infrastructure delivery in Nigeria. A thorough literature search of academic databases was conducted on current research trends on the subject of railway infrastructure by systematically reviewing selected published articles from reputable research domains. The analysis of the selected articles revealed the following among others (1) the existing railway infrastructure is in a state of mess and not sustainable, and (2), Government's investment/commitment in rail infrastructure seems inadequate compared to what is obtainable in other developed countries. Rail infrastructure development cannot be left to the Federal government of Nigeria to solve on its own; collaboration and participation are required. Government as a matter of priority should devote considerable attention to the development of rail infrastructure to harness the economic potential and transformation that sustainable rail infrastructural projects will provide.

  • PDF

Air-Gap Signal Treatment based Fuzzy Rule in Rail-Joint (Rail-Joint에서 퍼지룰을 기반으로하는 공극신호처리법)

  • Sung, H.K.;Jho, J.M.;Lee, J.M.;Bae, D.K.;Kim, B.S.;Shin, B.C.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1071-1072
    • /
    • 2006
  • Maglev using EMS becomes unstable by unexpected big air-gap disturbance. The main causes of the unexpected air-gap disturbance are step-wise rail joint and large distance between rail splices. For the stable operation of the Maglev, the conventional system uses the threshold method, which selects one gap sensor among two gap sensors installed on the magnet to read the gap between magnet and guide rail. But the threshold method with a wide bandwidth makes the discontinuous air-gap signal at the rail joints because of the offset in air gap sensors and/or the step-wise rail joins. Further more, in the case of the one with a narrow bend-width, it makes Maglev system unstable because of frequent alternation. In this paper, a new method using fuzzy rule to reduce air-gap disturbances proposed to improve the stability of Maglev system. It treats the air-gap signal from dual gap sensors effectively to make continuous signal without air gap disturbance. Simulation and experiment results proved that the proposed scheme was effective to reduce air-gap disturbance from dual gap sensors in rail joints.

  • PDF

A Simulation Modeling for Rail Potential and Leakage Current Analysis in DC Traction System (직류 전기철도에서의 레일전위 및 누설전류 해석을 위한 시뮬레이션 모델링)

  • Yoon, Yim-Joong;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.196-201
    • /
    • 2008
  • In DC traction systems, a part of feedback current returning through rails becomes leakage current, illumination on a metal laid underground results from the leakage current to ground. To prevent the leakage current on rails, feedback rails almost have insulated with the ground. Insulation between rails and the ground causes that the earth method changes a isolated method in DC traction systems. the rail potential rise results in the isolated method. the rail potential rise causes an electric shock when a person touches the ground and rolling stock. To decrease the rail potential rise and leakage current, there are methods for reducing the feedback resistance and current of rails, increasing the leakage resistance, decreasing the distance between substations. But it are necessary to forecast and analyze the rail potential and amplitude of leakage current. In this paper, we modeled DC traction systems and feedback circuit to simulate the rail potential and amplitude of leakage current using PSCAD/EMTDC that is power analysis program, forecasted the rail potential and amplitude of leakage current about changing various parameters in the electric circuit. By using the simulation model, we easily will forecast the rail potential and amplitude of leakage current in case of a level of basic design and maintenance in electric railway systems, valuably use basic data in case of system selection.

  • PDF

Running Safety Analysis of Railway Vehicle passing through Curve depending on Rail Inclination Change (레일 경좌 변화에 따른 곡선부 통과열차의 주행안전성 해석)

  • Kim, Moon Ki;Eom, Beom Gyu;Lee, Hi Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제23권3호
    • /
    • pp.199-208
    • /
    • 2013
  • So far today, there is a speed limit by the radius of curve based on operation regulation in domestic railway, however a study for the maximum running speed at the curved section without any derailment would be necessary. The two major factors related to the running safety of railway vehicle are classified as the railway vehicle condition and the track condition. In terms of the rail inclination among many other factors, the determination of rail inclination within the possible limit is necessary for the geometrical structure of the optimum track. The disregard of the geometrical parameter related to the rail inclination may cause a serious problem to the running safety of railway vehicle. This study is focusing on the analyzing of running safety regard to the change of rail inclination among the many other parameters to improve derailment safety, so that there is an affection analysis of the running safety regard to the change of rail inclination in the ideal and geometric track condition. Also There is an affection analysis of the running safety regard to the simultaneous change of rail inclination and the running speed at the curved section. According to analysis results of running safety, In case that the left and right rail inclination are 1/40, the running safety of this condition defined than other conditions. Also, the rail inclination of conventional lines is 1/40, Therefore, the railway vehicle passing through curve is safe when the railway vehicle runs in conventional lines.

Characteristics of Vibration and Sound Radiated from Rails of Concrete Slab Tracks for Domestic High Speed Trains (국내 고속 철도 콘크리트 슬라브 궤도의 진동 및 방사 소음 해석)

  • Ryue, Jungsoo;Jang, Seungho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제23권7호
    • /
    • pp.605-616
    • /
    • 2013
  • An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. In the present paper, characteristics of rail vibration and radiated sound power from concrete slab tracks for domestic high speed train(KTX) is investigated by means of a numerical method. The waveguide finite element and boundary element are combined and applied for this analysis. The concrete slab track is modelled simply with a rail and rail pad regarding the concrete slab as a rigid ground. The wave types which contribute significantly to the rail vibration and radiated noise are identified in terms of the mobility and decay rates. In addition, the effect of the rail pad stiffness on the radiated power is examined for two different rail pad stiffnesses.

Analysis of Factors Affecting Rail Transit Ridership at Urban Rail Stations (도시철도역별 이용수요의 영향요인에 관한 연구)

  • Lee, Chan Hwi;Yun, Dae Sic
    • Journal of Korean Society of Transportation
    • /
    • 제32권2호
    • /
    • pp.139-151
    • /
    • 2014
  • This paper analyzes factors affecting rail transit ridership at urban rail stations of the Daegu Metropolitan City in 2011. Rail transit ridership is analyzed by dividing weekdays and weekends in order that their differences may be observed. The data used in this study includes various explanatory variables, such as floor area which was collected from building ledger and GIS cadastral map, number of bus routes(line) possible to transfer from urban rail transit, number of students enrolled in middle and high schools, and universities located in access areas of rail transit. For this study, multiple regression models are estimated including various explanatory variables affecting rail transit ridership of weekdays and weekends. From the study, the number of statistically significant explanatory variables and the relative effect of each variable are shown to be different between weekdays and weekends.

Analysis of Rail Wear Rate according to Wheel/Rail Contact Pressure on Curved Track (곡선부 차륜/레일 접촉압력에 따른 레일마모진전 경향 분석)

  • Sung, Deok-Yong
    • Journal of the Korean Society for Railway
    • /
    • 제20권4호
    • /
    • pp.512-520
    • /
    • 2017
  • On a typical railway, trains travel using the friction between the wheel and the rail. Contact pressure is generated between the wheel and the rail, and the magnitude of the contact pressure changes depending on the weight, speed, wheel-set hunting, and contact point of the vehicle. In this study, the contact characteristics were analyzed through the finite element analysis for the wheel/rail system on curved track, and fatigue damage and wear rate of wheel/rail according to contact pressure were analyzed through rolling contact fatigue test. Results indicate that, general and heat treated rails showed higher wear rate than wheels, and general and heat treated rail wear rate increased rapidly over a certain number of repetitions. In addition, the general rail wear rate was about 7 ~ 15% higher than that of the heat treated rail, and a regression equation for the rail wear rate with the contact pressure in the contact pressure range of 900 ~ 1,500 MPa was presented.

The Development of Third-Rail System Applied to Turn-out Section for Urban Maglev (도시형 자기부상열차 분기기 구간의 제3궤조 전차선 시스템 개발)

  • Min, Byong-Chan;Heo, Young-Tae;Hong, Du-Young;Lee, Won-Joo;Jo, Su-Yeon;Jeong, Nam-Cheol
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3046-3051
    • /
    • 2011
  • The third-rail system is an important device supplying power directly to the Maglev train through physical contact with the collecting shoe. It is directly related to safety and reliability for the running of Maglev. However, most the third-rail system used in Korea depend on foreign product or technologies, Korea Urban Maglev in the development of appropriate power feeding is urgent. In particular, the turnout section is the weakness point in the system because bending force by turnout section movement and fatigue caused by repetitive motion as well as the expansion by temperature, the forces by Maglev collecting shoe is added th the third-rail. Therefore, this paper proposes the third-rail system appropriate for Korean Urban Maglev of turnout section. To verify the structural stability of POSCO ICT third-rail system, the finite element analysis and physical testing was performed. The third-rail is fixed on each side of the turn-out section steel structure by epoxy insulation supporter and the integral behaviors are occurred. Therefore, the maximum horizontal displacements of each support are investigated and then, it is applied to finite element model of the third-rail to investigate the moments and stress. Also, the bending test about one million times and Expansion Joint for the third-rail was performed. The third-rail system safety and reliability was identified by test line on Korea Institute of Machinery & Materials in Deajeon for under the actual usage environment such as the Maglev and turn-out operation.

  • PDF

The Reduction Case of Occurrence of Abnormal Wearing of Rail in Compound Curve Part (복심곡선 레일이상마모 발생 저감 사례)

  • Kim, Wan-Sool
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1097-1106
    • /
    • 2007
  • Rail provides running tract for train and broadly and widely conveys the weight of the train exerted from the train wheels that the rail directly supports onto the cross tie and roadbed, and supports the cross-sectional pressure exerted by centrifugal force at curvatures. That is, stationary rail provides surface on which dynamic train runs and guarantees cross-sectional resistance to enable the vertical snake motion of the train wheels as well as to maintain lateral force at curvatures. Rail provides running surface on which train wheels can run smoothly, and secures vertical and lateral force. However, it undergoes continuous destructive reactions (wearing and damages) and abrasion of the cladding by the train wheels. It is obvious that wearing will result when two metal parts act against each other. However, occurrence of abnormal wearing such as rapid wearing of the rail side due to complex generation of various mechanisms at the contact surface between the rail and train wheel flange. It is not easy to simply examine the causes of occurrence of abnormal wearing of rail and train wheel flange. Although countless number of academicians and specialists are conducting researches on abnormal wearing of rail and vertical wearing of train wheels, I believe it is too early to argue on pros and cons due to insufficiency of officially verified information on the issue. This review will be focusing on the examples of repairs that reduced the generation of abnormal wearing of rail by reviewing and improving characteristics of wearing and slack, speed of the train and cant as well as status of lubricator by choosing the compound curves present in the section between the $Anguk{\sim}Jongno3-ga$ Stations of the Route No. 3 among the compound curve tracks of the Seoul Metro Routes No. 3 & 4 at which abnormal wearing is generated continuously.

  • PDF