• Title/Summary/Keyword: Rail noise

Search Result 367, Processing Time 0.026 seconds

Calculation of transmission loss design values of a high speed train wall by acoustic analysis of exterior sound field (외부음장해석에 의한 고속전철 벽면에서의 투과손실 목표치 계산)

  • 김관주;유남식
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.249-256
    • /
    • 1998
  • Design target values of transmission loss in a high-speed train wall are suggested by calculating the difference between interior and exterior noise levels of it. Exterior noise level distribution on the boundary of train wall is calculated by Sysnoise, with sound source input prepared by experiments. Two kinds of exterior sound sources are considered, the rolling noise of train wheels on the rail and the aerodynamic noise from the pantograph. Interior noise level is provided by high-speed design target. Transmission loss characteristics according to the frequency band are examined.

  • PDF

Noise and Vibration Solutions Considering Stability Effects for High-Speed Rail ChonAn Station in Korea (한국고속철도 천안역사에 대한 소음 및 진동영향 연구)

  • Kweon Young-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.848-853
    • /
    • 2005
  • The objective of this paper is to address to the providing an adequate noise and vibration solution, required for High Speed Rail while maintaining the stability criteria of the ChonAn station structure, the first constructed in Korean High Speed Railway. The significant acoustic pressure level will be induced by the high speed trains passing-by. Therefore, the high level study of this case is necessary. The acoustic pressure level of 85 dB(A) inside the ChonAn station is expected, and the spaces below concrete slab are not suitable for commercial purpose, thus installation of filtering systems (spring boxes containing viscous dampers, ballast mats and acoustic shield) are provided to reduce the effect of the noise and vibration to acceptable level of 55 dB(A). But, a major drawback of application of the previously conducted experimental results was that the actual effect of installation of filtering system was never been validated. Therefore, the acquisition of noise and vibration on the present structure were obtained and compared to the computer simulations. These predicted the behavior of the station reasonably well. Also, the installation of filtering systems gave the superior reduction on noise and vibration. This application is successfully adapted without scarifying stability criteria related to the structural stability including excessive deformations or displacements. Three traffic operation safety limits: deck vertical acceleration, deflection of the structure, and longitudinal displacement of the slab were satisfactory.

  • PDF

Study for Prediction of Contact Forces between Wheel and Rail Using Vibrational Transfer Function of the Scaled Squeal Noise Test Rig (축소 스킬소음 시험장치의 진동전달특성을 이용한 차륜/레일의 접촉력 예측에 관한 연구)

  • Lee, Junheon;Kim, Jiyong;Ji, Eun;Kim, Daeyong;Kim, Kwanju
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • Curved squeal noise may result when railway vehicles run on curved tracks. Contact between the wheels and the rails causes a stick-slip phenomenon, which generates squeal noise. In order to identify the mechanism of the squeal noise systematically, a scaled test rig has been fabricated. Knowledge of the contact forces between the wheels and the rail rollers is essential for investigating the squeal noise characteristics; however, it is difficult to measure there contact force. In this study, contact forces have been calculated indirectly according to the modal behavior of the subframe that supports the rail roller and the responses at specific positions of that subframe. In order to verify the estimated contact forces, the displacements at the contact points between the wheels and rail rollers have been calculated from the estimated forces; the resulting values have been compared with the measured displacement values. The SPL at the specific location has been calculated using the estimated contact forces and this also has been compared with the SPL, measured in a semi-anechoic chamber. The comparisons in displacements and SPLs show good correlation.