• Title/Summary/Keyword: Rail Capacity

Search Result 172, Processing Time 0.025 seconds

Experimental Study on the Connection between RC Footing and Steel Pile according to Rail loads (철도하중을 고려한 기초구조물과 강관말뚝 연결부 거동에 관한 실험적 연구)

  • Kim, Jung-Sung;Kim, Dae-Sang;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1607-1614
    • /
    • 2011
  • As the connection between spread footing and pile is very important structural connection, it acts as the inter-loading medium to transfer the rail loads applied by superstructure to ground through the body pile of foundation. The experimental study is the method how to reinforce the pile cap between steel pile and footing utilizing perfobond plate with protruding keys. It were experimented on the compression punching tests and bending moment tests against the vertical loading and horizontal loadings acting on head of steel tube pipe. As a result, the tension capacity of the perfobond plate exhibited the superior performance due to the interlocking or dowel effects by the sheared keys of perfobond plate, and there were showing the sufficient strength and ductile capacity against the bending moment of horizontal loading tests. Therefore, it is judged that "the embedded method of perfobond plate in pile cap and footing" which is utilizing the shear connection of perfobond plate with protruding keys has a sufficient structural stability enough to be replaced with the current specification of reinforced method of pile cap with vertically deformed rebar against the vertical compression loads and bending moments that are able to occur in the combination structure of steel pile and the footing foundation.

  • PDF

A Study on the Rail Vehicle Applications and Increase the Capacity of Lithium Polymer Batteries (리튬폴리머 축전지의 철도차량 적용 및 용량증대에 관한 연구)

  • Cho, Kyu-Hwa;Kang, Seung-Wook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.340-345
    • /
    • 2016
  • Railway vehicle battery is supplying the power required for the initial start-up of the train, in the event of a fault in the vehicle, or catenary for supplying emergency power is one of the components are very important. Currently, the railway vehicles such as nickel-cadmium batteries are being used [1,2]. Ni-Cd batteries as a battery installed in the railway vehicles have a strong corrosion resistance is included, The charge-discharge performance is significantly degraded in cold weather, there is a danger of deterioration or explosion. Train accidents have been caused a lot of damage due to rapid deterioration and cracking of the battery and memory due to the effect of Ni-Cd batteries. In order to solve the problems, There is no risk of degradation, deterioration and leakage, cracking and exploding. maintenance is simple and applied measures proposed to apply Lithium Polymer battery of high performance. In addition, the lack of capacity problems identified by testing the different special systems is replaced by a 70Ah lithium-polymer battery is possible without changing the batteries of 50Ah caused by installing additional equipment in existing older trains were applied to the vehicle.

A Experimental Study on Wearing Phenomenon of Cu-type Wearing Slider for the Rail Motor Car's Pantograph (집전장치용 동계 주습판의 마모현상에 관한 실험적 연구)

  • Kim, Kyung-Seob
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.224-230
    • /
    • 2012
  • The wearing slider of the rail motor car's pantograph is considerable changed by the type and the material properties. Especially, precipitation and arc influences are main factors decided to life time of wearing slider and contact wire. This study is wearing phenomenon analysis of Cu-type wearing slider with high electric conductivity and resistance arc through experiment by running train. Author observed that wearing phenomenon of Cu-type wearing slider with normal and abnormal wearing characteristics and comparatively analysis precipitation, mileage and weight influences of exchanged Cutype and Fe-type wearing sliders. In this paper result showed that necessity for the application which is the Fe-type of wearing slider had superior wear resisting capacity etc., through tribology approach.

Monitoring in-service performance of fibre-reinforced foamed urethane sleepers/bearers in railway urban turnout systems

  • Kaewunruen, Sakdirat
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.131-157
    • /
    • 2014
  • Special track systems used to divert a train to other directions or other tracks are generally called 'railway turnout'. A traditional turnout system consists of steel rails, switches, crossings, steel plates, fasteners, screw spikes, timber bearers, ballast and formation. The wheel rail contact over the crossing transfer zone has a dip-like shape and can often cause detrimental impact loads on the railway track and its components. The large impact also emits disturbing noises (either impact or ground-borne noise) to railway neighbors. In a brown-field railway track where an existing aged infrastructure requires renewal or maintenance, some physical constraints and construction complexities may dominate the choice of track forms or certain components. With the difficulty to seek for high-quality timbers with dimensional stability, a methodology to replace aged timber bearers in harsh dynamic environments is to adopt an alternative material that could mimic responses and characteristics of timber in both static and dynamic loading conditions. A critical review has suggested an application of an alternative material called fibre-reinforced foamed urethane (FFU). The full-scale capacity design makes use of its comparable engineering characteristics to timber, high-impact attenuation, high damping property, and a longer service life. A field trial to investigate in-situ behaviours of a turnout grillage system using an alternative material, 'fibre-reinforced foamed urethane (FFU)' bearers, has been carried out at a complex turnout junction under heavy mixed traffics at Hornsby, New South Wales, Australia. The turnout junction was renewed using the FFU bearers altogether with new special track components. Influences of the FFU bearers on track geometry (recorded by track inspection vehicle 'AK Car'), track settlement (based on survey data), track dynamics, and acoustic characteristics have been measured. Operational train pass-by measurements have been analysed to evaluate the effectiveness of the replacement methodology. Comparative studies show that the use of FFU bearers generates higher rail and sleeper accelerations but the damping capacity of the FFU help suppress vibration transferring onto other track components. The survey data analysis suggests a small vertical settlement and negligible lateral movement of the turnout system. The static and dynamic behaviours of FFU bearers appear to equate that of natural timber but its service life is superior.

An Efficient Model and Algorithm to Allocate Rail Track Capacity Considering Line Plans (노선 계획을 고려한 철도 선로 용량 배분 최적화 모형 및 해법)

  • Park, Bum Hwan;Chung, Kwang Woo
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.6
    • /
    • pp.466-473
    • /
    • 2014
  • Recently, there is has been significant interest in the allocation systems of rail track capacities with considerations of the multiple train operating companies. The system indicates both a well-defined procedure and an algorithmic method to allocate the rail track capacities. Among them, this study considers the algorithmic method to derive the optimal timetable for the trains, which the companies propose together with their arrival and departure times at each station. However, most studies have focused on the adjustment of the departure and arrival times without conflicts, which could result in incompatible allocations with the line plan, which would result in an insufficient number of trains on each line to satisfy the demands. Our study presents a new optimization model and algorithm for the allocation problem in order to reflect the predetermined line plan. Furthermore, we provide the experimental results that were applied to the Korean high-speed railway network including the Suseo lines.

Composite Discharge Capacity Analysis of Vertical Drain Installed in Ground (연직배수재가 타설된 지반의 복합통수능 해석)

  • Kim, Chang-Young;Kwak, No-Kyung;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1167-1174
    • /
    • 2008
  • Vertical drain method, which is one of the soft ground improvement methods, shorten s drain path to accelerate consolidation process and is applied in many sites. At a recent, composite discharge capacity experiment that analyze discharge amount by consolidation behavior with overburden pressure of soft ground in laboratory, simulates similarly with actuality. Geotechnical engineering problems such a s soft ground improvement are solved by numerical analysis by development of computer and numerical analysis techniques. Numerical analysis does that result is contrary by user's inexperience for choice of constitution model and application of analysis method. Therefore, this thesis experiments on composite discharge capacity test and study discharge capacity of drain and consolidation behavior of soft ground installed prefabricated vertical drain boards. Also, This thesis studied reasonable input parameters and constitution model by compare results of composite discharge capacity test and numerical analysis using PLAXIS that is 2D finial element numerical analysis program.

  • PDF

A Study on the Railway Intelligent Transportation System, Developed Detailed Research Strategy (철도분야 지능형교통체계 세부추진전략 수립연구)

  • Lee, Jun;Jin, Il-Kyoung;Moon, Dae-Sub;Eom, Jin-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.614-620
    • /
    • 2011
  • Railway intelligent transportation systems and related Ministry of Land and rail operating agency's railway informatization planning of information technology, effective through the use of management strategies to establish or run to support the systematic informatization investment that you want to execute work in progress, during and yet the institutional informatization of operations mainly in the form of efficiency is Chinhae. Accordingly, in order to promote the details of the final challenge of providing real-time information and the usefulness of this information collection is clearly for the railway sector by function of the components is necessary to distinguish. In this paper, the details of the plan goals, promoting convenient rail-based real-time information, to promote optimal gohyoeuleul railways, railway safety and comfort, was defined as three. Selection of each goal, because the direction of vision and ITS around the railroad center of road users by highlighting the benefits of the railroad's traffic information center user switching, real-time delivery of information diversity (enhanced content) that can increase the capacity of line train operating systems, enhancing the safety management system introduced in the monitoring system and is a railroad crossing. Because urban railway project in accordance with the goal of decreasing the annual rate of the train support, and the average passenger wait time savings, increased future demand for railway, rail safety, including securing the expected effects may occur.

  • PDF

A Study on the Fire Response Scenarios Generation of Unmanned Light Rail Transit with Systems Engineering Architecture Design Methodology (시스템 아키텍처 설계 방법론에 기반한 무인운전 경량전철 차량의 화재대응 시나리오 생성에 관한 연구)

  • Han, Seok-Youn;Kim, Joo-Uk;Kim, Young-min
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.33-43
    • /
    • 2015
  • Modern systems development becomes more and more complicated due to the need on the ever-increasing capability of the systems. In addition to the complexity issue, safety concern is also increasing since the malfunctions of the systems under development may result in the accidents in both the test and evaluation phase and the operation phase. Light rail transit(LRT) with passenger capacity between bus and subway is driven by an unmanned control, so safety issues of LRT in emergency shall be considered more carefully than other rolling stock. Modern railway system is a complex system and many actions in emergency are required. In this view, interoperability approach is effective to identify the related elements in emergency. In this paper, we propose the method to generate the fire response scenario of unmann ed LRT based on the outputs of systems engineering architecture design methodology. The proposed method is could be contributed to establish more reliable and applicable fire response scenario.

A Study on Acceleration Characteristics for Automated Rail Mounted Crane (자동화크레인의 가속도 특성에 관한 연구)

  • Kim, Hwan-Seong;Kim, Myeong-Kyu;Tran Ngoc, Hoang Son
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.215-216
    • /
    • 2009
  • By growing the capacity of container in the world, main container terminal in countries introduces the automated container equipments and try to improve the productivity for handling the container. ARMC(Automated Rail Mounted Crane) is installed in automated container terminal and expected the high efficiency of productivity by using minimum-time control method. However recently by the GREEN Port policy, high energy efficiency method for container equipments is importance issue in ports. In this paper, the 3-dimensional modelling of AMRC is discussed and the acceleration characteristics for ARMC is analyzed By using the results of this paper, the advanced controller for the crane will be developed in future.

  • PDF

Trans-Korea Rail Logistics Strategy for the Normalization of South and North Korea Economic Cooperation (남북경제협력 정상화를 대비한 철도 물류망 구축 방안)

  • Kim, Jeong Hyun;Kim, Gang Seog;Kim, Yong Jin;Yu, Jeong Whon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.511-520
    • /
    • 2016
  • It is essential to connect the railroads between South and North Korea in order to the implementation of the Eurasia initiatives and prepare for the normalization of the economic cooperation between south and north Korea as well as the unification. This study provides the strategy to establish the rail logistics network for the normalized trades between south and north Korea, and the accommodation of the logistics demands to China and Russia. The alternative routes were designated and the costs for the rehabilitation were estimated, and suggested the priority for the investment. The Trans-China Rail is prior to the Trans-Siberia Rail in terms of the utility for the logistics and the political value. In connection to the TSR, it is desirable to pass the Seoul-Gyeonggi area where the demand is greater than the other area. This route is limited by the restriction in the capacity, then the Gyeonggi Ring Rail route may be necessary.