• Title/Summary/Keyword: Radon in soil

Search Result 84, Processing Time 0.028 seconds

An Analysis of Anomalous Radon Variation Caused by M5.8 Gyeong-ju Earthquake (규모 5.8 경주 지진에 의한 토양 내 라돈농도의 이상변화 분석)

  • Kim, Jin-seop;Kim, Minjun;Kim, Sunwoong;Lee, Hyomin
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • The radon concentration in soil varies with environmental factors such as atmospheric temperature and pressure, rainfall and soil temperature. The effects of these factors, therefore, should be differentiate in order to analyzed the anomalous radon variation caused by earthquake events. For these reasons, a comparative analysis between the radon variations with environmental factors and the anomalous variations caused by Gyeong-ju earthquake occurred in September 12, 2016 has been conducted. Radon concentration in soil and environmental factors were continuously measured at a monitoring ste located in 58Km away from earthquake epicenter from January 01, 2014 to May 31, 2017. The co-relationships between radon concentration and environmental factors were analyzed. The seasonal average radon concentration(n) and the standard variation(${\rho}$) was calculated, and the regions of ${\pm}1{\rho}$ and ${\pm}2{\rho}$ deviations from seasonal average concentration were investigated to find the anomalous radon variation related to Gyeong-ju earthquake. Earthquake effectiveness and q-factor were also calculated. The radon concentration indicated the seasonal variation pattern, showing high in summer and low in winter. It increases with increasing air temperature and soil temperature, and has the positive co-relationships of $R^2=0.9136$ and $R^2=0.8496$, respectively. The radon concentration decreases with increasing atmospheric pressure, and has the negative co-relationships of $R^2=0.7825$. Four regions of ${\pm}2{\rho}$ deviation from average seasonal concentration (A1: 7/3~7/5, A2: 7/18, A3: 8/4~8/5, A4: 10/17~10/20) were detected before and after Gyeong-ju earthquake. A1, A2, A3 were determined as the anomalous radon variation caused by the earthquake from co-relationship analyses with environmental factors, earthquake effectiveness and q-factor. During the period of anomalous radon variation, correlation coefficients between radon concentration and environmental factors were significantly lowered compared to other periods such as air temperature ($R^2=0.2314$), soil temperature ($R^2=0.1138$) and atmospheric pressure ($R^2=0.0475$). Annual average radon concentration was also highest at 2016, the year of Gyeong-ju earthquake.

Assessment of Human Exposures to Indoor Radon Released from Groundwater (지하수로부터의 실내 라돈오염시 인체노출평가)

  • 유동한;김상준;양지원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.3
    • /
    • pp.241-249
    • /
    • 2001
  • A report by the National Research Council in the United States suggested that many lung cancer deaths each year are associated with breathing radon in indoor air. Most of the indoor radon comes directly from soil beneath the basement of foundation. Recently, radon released from groundwater is found to contribute to the total inhalation risk from indoor air. This study presents the assessment of a exposure to radon released from the groundwater into indoor air. At first, a 3-compartment model is describe the transfer and distribution if radon released from groundwater in a house through showering, washing clothes, and flushing toilets. The model is used to estimate a daily human exposure through inhalation of such radon for adults based on two sets of exposure scenarios, Finally, a sensitivity analysis is used to identify important parameters. The results obtained from the study would help to increase the understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF

Analysis of radon depth profile in soil air after a rainfall by using diffusion model

  • Maeng, Seongjin;Han, Seung Yeon;Lee, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2013-2017
    • /
    • 2019
  • The radon concentrations in soil air were measured before and after a rainfall. 226Ra concentration, porosity, moisture content and temperature in soil were measured at Kyungpook National University in Daegu. As the results of measurement and analysis, the arithmetic mean of measured 222Rn concentration increased from 12100 ± 500 Bq/㎥ to 16200 ± 600 Bq/㎥ after the rainfall. And the measured 226Ra concentration was 61.4 ± 5.7 Bq/kg and the measured porosity was 0.5 in soil. The estimated values of 226Ra concentration and porosity using diffusion model of 222Rn in soil were 60.3 Bq/kg and 0.509, respectively. The estimated values were similar to the measured values. 222Rn concentration in soil increased with depth and moisture content. The estimations were obtained through fitting based on the diffusion model of 222Rn using the measurement values. The measured depth profiles of 222Rn were similar to the calculated depth profiles of 222Rn in soil. We hope that the results of this study will be useful for environmental radiation analysis.

Distribution Characteristics of Uranium and Radon Concentration in Groundwaters of Provinces in Korea (지역별 지하수중 우라늄과 라돈의 함량 분포 특성)

  • Jeong, Do-Hwan;Kim, Moon-Su;Ju, Byoung-Kyu;Kim, Tae-Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.143-149
    • /
    • 2011
  • In order to figure out the characteristics of radionuclides concentrations of nine provinces, we analyzed uranium and radon in 681 samples of groundwater. Most of uranium concentrations in each province were less than $10{\mu}g/L$, and Gyeongnam, Jeonnam, Jeju provinces did not have groundwaters exceeding the US EPA drinking water MCL ($30{\mu}g/L$) of uranium. The ratio of radon values exceeding US EPA drinking water AMCL (4,000 pCi/L) was 22.6% (154/681) and Gyeongnam and Jeju provinces had no groundwaters exceeding the AMCL (alternative maximum contaminant level). Uranium and radon concentrations in groundwaters of Gyeonggi, Chungbuk, Jeonbuk, Chungnam mainly composed of the Mesozoic granite and the Precambrian gneiss were relatively high, but the concentrations of Gyeongnam and Jeju widely comprised of the sedimentary rock and the volcanic rock were relatively low. A week correlation between uranium and radon values showed in Gangwon, Chungbuk, Gyeonggi provinces.

Evaluation for Effectiveness of Radon Mitigation on Dwellings and Public Buildings in Korea (건축물 유형에 따른 라돈 저감 효과 평가)

  • Lee, DongHyun;Ryu, Seung-Hun;Jo, JungHeum;Seo, SungChul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.518-527
    • /
    • 2014
  • Objectives: The adverse health effects attributed to exposure to radon have been well known over the world. However, the efforts for prevention and mitigation of radon have not been taken in Korea so far. The purpose of this study was to evaluate the effectiveness of mitigation methods applied for various types of houses and public buildings with high level of radon. Methods: Based on the results of "National Radon Survey" performed by the National Institute of Environmental Research(NIER) in 2010-2012, we selected 30 candidate buildings consisting of 20 houses and 10 public buildings with greater than $148Bq/m^3$ of radon level. We measured the concentration of radon in 30 buildings, using E-PERMs and RAD-7 during January to March of 2013. More than five E-PERMs and one RAD-7 per house were installed for seven days. Ten houses and five public buildings were finally chosen to be mitigated after mainly considering the level of radon and the location of buildings nationwide. Three mitigation methods such as Sealing, two types of Active Ventilation(window-shaped and wall-typed ventilations), and Active Soil Depressurization(ASD) were applied, and the concentrations of radon were measured before and after mitigation, respectively. To evaluate the effectiveness of mitigation methods, reduction rates of radon were calculated and Wilcoxon's signed-rank test was performed. Results: The mean concentration of 15 buildings just before radon mitigation was $297.8Bq/m^3$, and most of the buildings were located in Gangwon, Chungbuk, Chungnam, and Daegu areas(73.3%), and built in 1959-1998. The level of radon decreased from 48% to 90% and kept the below recommendation limit of $148Bq/m^3$ after installation of radon mitigation. Among mitigation methods applied, the reduction rate(58.7-90.4%) of radon attributed to ASD was the greatest than that of other methods, followed by Active Ventilation(48.4-78.4%) and Sealing(<22%). The effectiveness of radon reduction by window-shaped Active Ventilation(63.2-75.2%) was relatively better than that of wall-typed Active Ventilation(48.4-54.3%). Conclusions: The results of this study indicate that ASD could be more effective for radon mitigation. Moreover, our findings would be background information in future for making the strategy for radon mitigation nationwide, as well as for developing Korean-version of mitigation techniques according to types of dwellings in Korea.

Radon-222 Concentrations of Metropolitan Subway Stations and Soils in the Seoul (서울 지하철역(地下鐵驛) 승강장(昇降場) 및 토양내(土壤內) 유해(有害)라돈함량(含量) 연구(硏究))

  • Hong, Young-Kook;Kim, Sung-Oh;Kim, Tong-Kwon
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.215-222
    • /
    • 1998
  • The radon (Rn-222) potential of metropolitan subway stations and soils in Seoul city were delineated using alpha-track filter and EDA-200 radon detectors, respectively. The uranium (U) and thorium (Th) contents were also determined using a Multi Channel Analyzer to identify the sources of radon gas. The average U concentrations in Seoul varies according to basement rock types. For example, there is $9.40{\pm}10.11ppm$ in the Precambrian metasedimentary rock (PM), $9.08{\pm}2.85ppm$ in the Jurassic Kwanaksan granite (JK) and $4.94{\pm}1.43ppm$ in the Jurassic Seoul granite (JS). Uranium contents in soil samples are $10.30{\pm}4.74ppm$ in JK, $10.10{\pm}7.43ppm$ in PM and $6.69{\pm}3.95ppm$ in JS and these closely reflect the content of uraniferous minerals. The levels of soil radon are $604{\pm}273pCi/L$ in JK, $502{\pm}275$ in JS and $262{\pm}211pCi/L$ in PM. The soil radon concentrations are shown to reflect soil permeability and porosity rather than their U contents. The mean indoor radon contents in subway stations are $1.50{\pm}0.62pCi/L$ on the 4th line, $1.41{\pm}0.95pCi/L$ on the 3rd line, $0.84{\pm}0.13pCi/L$ on the 1st line and $0.80{\pm}0.25pCi/L$ on the 2nd line. The subway stations located in the JK have the highest average radon concentration with $2.04{\pm}0.65pCi/L$, where levels of $1.57{\pm}0.81pCi/L$ occur in the JS and $0.80{\pm}0.23pCi/L$ in the PM. The highest radon levels of 4.1 pCi/L occur mainly in Keongbokkung station on the 3rd line and these exceed 4 pCi/L of the US EPA action level.

  • PDF

Radon Concentrations in Groundwater of the Goesan Area, Korea (괴산지역 지하수의 라돈 함량)

  • Cho, Byong-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.63-70
    • /
    • 2017
  • Radon concentrations were measured in 250 groundwater samples collected from the Goesan area where uraniferous black slate and granites abundantly occur in the formations. The measured radon levels ranged from 0.90 to 7,218.7 Bq/L with the median value of 54.3 Bq/L, similar to the value measured in the nationwide survey in 4,853 wells (52.1 Bq/L). The median value was highest in the Cretaceous granite area (390.0 Bq/L) while it was as low as 20.0~58.8 Bq/L in the Ogcheon meta-sedimentary rock areas. About 23.6% of the total samples exceeded the WHO guideline value of 100 Bq/L established in 2011. The exceeding rate was 69.0, 39.4, and 7.0~13.7% in the Cretaceous granite area, Jurassic granite area, and Ogcheon meta-sedimentary rock areas, respectively.

A Study on Radon Removal Efficiencies in Drinking Water according to the Variations of Water Temperature and Aeration Rate in Small Waterwork Facility (소규모 간이상수도 시설에서 수온과 폭기량 변화에 따른 수중 라돈 제거 효율에 관한 연구)

  • Kim, Hyun Gu;Choi, Jung Soo;Joo, Hyun Jong;Kim, Sung Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.52-57
    • /
    • 2013
  • Radon, which is one of the radioactive elements in the natural world, exists in the atmosphere and water. When this element inflows into the human body, it carries the risks of developing lung cancer and stomach cancer. Therefore, in this study, an effective 10 L scaled reactor was produced to mitigate radon in water and the radon mitigation efficiency in water following the changes in water temperature and amount of aeration were evaluated. Based on this, the radon mitigation efficiency (SRRR; Specific radon removal rate) was derived per unit air volume. According to the study result, when water temperature increased from $10^{\circ}C$ to $16^{\circ}C$, the SRRR value increased from 95 $nCi/m^3{\cdot}L$ to 134.4 $nCi/m^3{\cdot}L$, and when the amount of aeration increased from 0.2 L/min to 1 L/min, the SRRR value decreased from 198.1 $nCi/m^3{\cdot}L$ to 72.2 $nCi/m^3{\cdot}L$. Therefore, based on the experimental results, it is considered that it can be applied as a examination factor and objective indicator during the design of future radon-in-water mitigation systems.

Estimation of natural radionuclide and exhalation rates of environmental radioactive pollutants from the soil of northern India

  • Devi, Vandana;Chauhan, Rishi Pal
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1289-1296
    • /
    • 2020
  • The estimation of radioactivity level is vital for population health risk assessment and geological point of view and can be evaluated as rate of exhalation and source concentration (226Ra, 232Th and 40K). The present study deals with the soil samples for investigation of radionuclides content and exhalation rates of radon -thoron gas from different sites in northern Haryana, India. Absorbed dose and associated index estimated in the present study are the measures of environmental radioactivity to inhalation dose. Effective doses received by different tissues and organs by considering different occupancy and conditions are also measured. Exhalation rates of radon and thoron are measured with active scintillation monitors based on alpha spectroscopy namely scintillation radon (SRM) and thoron (STM) monitors respectively. Sample height was optimized before measurement of thoron exhalation rate using STM. Average values of radon and thoron exhalation are found 16.6 ± 0.7 mBqkg-1h-1 and 132.1 ± 2.6 mBqm-2s-1 respectively. Also, a simple approach was also adopted, to evaluate the thoron exhalation which accomplished a lot of challenges, the results are compared with the data obtained experimentally. The study is useful in the nationwide mapping of radon and thoron exhalation rates for understanding the environmental radioactivity status.

Measurement of the radon and thoron exhalation rates from the water surface of Yixin lake

  • Jiulin Wu;Shuaibin Liu;Tao Hu;Fen Lin;Ruomei Xie;Shuai Yuan;Haibo Yi;Yixiang Mo;Jiale Sun;Linquan Cheng;Huiying Li;Zhipeng Liu;Zhongkai Fan;Yanliang Tan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1538-1543
    • /
    • 2024
  • The importance of determining the radon exhalation rate from water surface is emphasized by the increased use of radon and its daughter products as tracers in large-scale circulation studies of the atmosphere. There were many methods to measure radon exhalation from water surface. With the development of radon exhalation rate measurement methods and instruments on the surface of the soil, the rock and building materials, so the radon exhalation rate from water surface can be more accurately measured by applying these improved methods and instruments. In this paper, a cuboid accumulation chamber surrounded by foam boards and a RAD7 were used to measure the radon exhalation rate on the water surface at three different positions by Yixin lake. Each measurement was performed 2 h. The radon exhalation rate from the water surface was about 6 × 10-3 Bq m-2s-1. The thoron exhalation rate from the water surface also can be estimated, it is about 0.16 Bq m-2s-1. These results hint that the radon transmission from the lake bottom soil to water and then into the atmosphere.