• Title/Summary/Keyword: Radius error

Search Result 275, Processing Time 0.021 seconds

Performance Test of Hypocenter Determination Methods under the Assumption of Inaccurate Velocity Models: A case of surface microseismic monitoring (부정확한 속도 모델을 가정한 진원 결정 방법의 성능평가: 지표면 미소지진 모니터링 사례)

  • Woo, Jeong-Ung;Rhie, Junkee;Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • The hypocenter distribution of microseismic events generated by hydraulic fracturing for shale gas development provides essential information for understanding characteristics of fracture network. In this study, we evaluate how inaccurate velocity models influence the inversion results of two widely used location programs, hypoellipse and hypoDD, which are developed based on an iterative linear inversion. We assume that 98 stations are densely located inside the circle with a radius of 4 km and 5 artificial hypocenter sets (S0 ~ S4) are located from the center of the network to the south with 1 km interval. Each hypocenter set contains 25 events placed on the plane. To quantify accuracies of the inversion results, we defined 6 parameters: difference between average hypocenters of assumed and inverted locations, $d_1$; ratio of assumed and inverted areas estimated by hypocenters, r; difference between dip of the reference plane and the best fitting plane for determined hypocenters, ${\theta}$; difference between strike of the reference plane and the best fitting plane for determined hypocenters, ${\phi}$; root-mean-square distance between hypocenters and the best fitting plane, $d_2$; root-mean-square error in horizontal direction on the best fitting plane, $d_3$. Synthetic travel times are calculated for the reference model having 1D layered structure and the inaccurate velocity model for the inversion is constructed by using normal distribution with standard deviations of 0.1, 0.2, and 0.3 km/s, respectively, with respect to the reference model. The parameters $d_1$, r, ${\theta}$, and $d_2$ show positive correlation with the level of velocity perturbations, but the others are not sensitive to the perturbations except S4, which is located at the outer boundary of the network. In cases of S0, S1, S2, and S3, hypoellipse and hypoDD provide similar results for $d_1$. However, for other parameters, hypoDD shows much better results and errors of locations can be reduced by about several meters regardless of the level of perturbations. In light of the purpose to understand the characteristics of hydraulic fracturing, $1{\sigma}$ error of velocity structure should be under 0.2 km/s in hypoellipse and 0.3 km/s in hypoDD.

Self-Tour Service Technology based on a Smartphone (스마트 폰 기반 Self-Tour 서비스 기술 연구)

  • Bae, Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.147-157
    • /
    • 2010
  • With the immergence of the iPhone, the interest in Smartphones is getting higher as services can be provided directly between service providers and consumers without the network operators. As the number of international tourists increase, individual tourists are also increasing. According to the WTO's (World Tourism Organization) prediction, the number of international tourists will be 1.56 billion in 2020,and the average growth rate will be 4.1% a year. Chinese tourists, in particular, are increasing rapidly and about 100 million will travel the world in 2020. In 2009, about 7.8 million foreign tourists visited Korea and the Ministry of Culture, Sports and Tourism is trying to attract 12 million foreign tourists in 2014. A research institute carried out a survey targeting foreign tourists and the survey results showed that they felt uncomfortable with communication (about 55.8%) and directional signs (about 21.4%) when they traveled in Korea. To solve this inconvenience for foreign tourists, multilingual servicesfor traffic signs, tour information, shopping information and so forth should be enhanced. The appearance of the Smartphone comes just in time to provide a new service to address these inconveniences. Smartphones are especially useful because every Smartphone has GPS (Global Positioning System) that can provide users' location to the system, making it possible to provide location-based services. For improvement of tourists' convenience, Seoul Metropolitan Government hasinitiated the u-tour service using Kiosks and Smartphones, and several Province Governments have started the u-tourpia project using RFID (Radio Frequency IDentification) and an exclusive device. Even though the u-tour or u-tourpia service used the Smartphone and RFID, the tourist should know the location of the Kiosks and have previous information. So, this service did not give the solution yet. In this paper, I developed a new convenient service which can provide location based information for the individual tourists using GPS, WiFi, and 3G. The service was tested at Insa-dong in Seoul, and the service can provide tour information around the tourist using a push service without user selection. This self-tour service is designed for providing a travel guide service for foreign travelers from the airport to their destination and information about tourist attractions. The system reduced information traffic by constraining receipt of information to tourist themes and locations within a 20m or 40m radius of the device. In this case, service providers can provide targeted, just-in-time services to special customers by sending desired information. For evaluating the implemented system, the contents of 40 gift shops and traditional restaurants in Insa-dong are stored in the CMS (Content Management System). The service program shows a map displaying the current location of the tourist and displays a circle which shows the range to get the tourist information. If there is information for the tourist within range, the information viewer is activated. If there is only a single resultto display, the information viewer pops up directly, and if there are several results, the viewer shows a list of the contents and the user can choose content manually. As aresult, the proposed system can provide location-based tourist information to tourists without previous knowledge of the area. Currently, the GPS has a margin of error (about 10~20m) and this leads the location and information errors. However, because our Government is planning to provide DGPS (Differential GPS) information by DMB (Digital Multimedia Broadcasting) this error will be reduced to within 1m.

Development of Geometric Calibration Method for Triple Head Pinhole SPECT System (삼중헤드 SPECT에서 기하학적 보정 기법의 개발)

  • Kim, Joong-Hyun;Lee, Jae-Sung;Lee, Won-Woo;Park, So-Yeon;Son, Ji-Yeon;Kim, Yu-Kyeong;Kim, Sang-Eun;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Purpose: Micro-pinhole SPECT system with conventional multiple-head gamma cameras has the advantage of high magnification factor for imaging of rodents. However, several geometric factors should be calibrated to obtain the SPECT image with good image quality. We developed a simplified geometric calibration method for rotating triple-head pinhole SPECT system and assessed the effects of the calibration using several phantom and rodent imaging studies. Materials and Methods: Trionix Triad XLT9 triple-head SPECT scanner with 1.0 mm pinhole apertures were used for the experiments. Approximately centered point source was scanned to track the angle-dependent positioning errors. The centroid of point source was determined by the center of mass calculation. Axially departed two point sources were scanned to calibrate radius of rotation from pinhole to center of rotation. To verify the improvements by the geometric calibration, we compared the spatial resolution of the reconstructed image of Tc-99m point source with and without the calibration. SPECT image of micro performance phantom with hot rod inserts was acquired and several animal imaging studies were performed. Results: Exact sphere shape of the point source was obtained by applying the calibration and axial resolution was improved. Lesion detectibility and image quality was also much improved by the calibration in the phantom and animal studies. Conclusion: Serious degradation of micro-pinhole SPECT images due to the geometric errors could be corrected using a simplified calibration method using only one or two point sources.

A Study on the Stock Assessment and Management Implications of the Korean Aucha perch (Coreoperca herzi) in Freshwater: (1) Estimation of Population Ecological Characteristics of Coreoperca herzi in the Mid-Upper System of the Seomjin River (담수산 어류 꺽지 (Coreoperca herzi)의 자원 평가 및 관리 방안 연구: 섬진강 중.상류 수계에서 꺽지의 개체군 생태학적 특성치 추정 (1))

  • Jang, Sung-Hyun;Ryu, Hui-Seong;Lee, Jung-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.82-90
    • /
    • 2010
  • The ecological characteristics of the Korean Aucha perch, Coreoperca herzi, were determined in order to estimate stock of the mid-upper system of the Seomjin River. The age was determined by counting the otolith annuli. The oldest fish observed in this study was 5 years old. Relationships between body length (BL) and body weight (BW) were $BW=0.0195BL^{3.08}$ ($R^2=0.966$) (p<0.01). Relationships between the otolith radius (R) and body length (BL) were BL=3.882R+1.66 ($R^2=0.944$). The von Bertalanffy growth parameters estimated from a non-linear regression method were $L_{\infty}=19.68\;cm$, $W_{\infty}=188.64\;g$, $K=0.17\;year^{-1}$ and $t_0=-1.46$ year. Therefore, growth in length of the fish was expressed by the von Bertalanffy's growth equation as $L_t=19.68$ ($1-e^{-0.17(t+1.46)}$) ($R^2=0.997$). The annual survival rate (S) was estimated to be $0.666\;year^{-1}$. The instantaneous coefficient of natural mortality (M) of estimated from the Zhang and Megrey method was $0.346\;year^{-1}$, and instantaneous coefficient of fishing mortality (F) was calculated $0.061\;year^{-1}$. From the estimates of survival rate (S), the instantaneous coefficient of total mortality(Z) was estimated to be $0.407\;year^{-1}$.

Application and Comparative Analysis of River Discharge Estimation Methods Using Surface Velocity (표면유속을 이용한 하천 유량산정방법의 적용 및 비교 분석)

  • Jae Hyun, Song;Seok Geun Park;Chi Young Kim;Hung Soo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.15-32
    • /
    • 2023
  • There are some difficulties such as safety problem and need of manpower in measuring discharge by submerging the instruments because of many floating debris and very fast flow in the river during the flood season. As an alternative, microwave water surface current meters have been increasingly used these days, which are easy to measure the discharge in the field without contacting the water surface directly. But it is also hard to apply the method in the sudden and rapidly changing field conditions. Therefore, the estimation of the discharge using the surface velocity in flood conditions requires a theoretical and economical approach. In this study, the measurements from microwave water surface current meter and rating curve were collected and then analyzed by the discharge estimation method using the surface velocity. Generally, the measured and converted discharge are analyzed to be similar in all methods at a hydraulic radius of 3 m or over or a mean velocity of 2 ㎧ or more. Besides, the study computed the discharge by the index velocity method and the velocity profile method with the maximum surface velocity in the section where the maximum velocity occurs at the high water level range of the rating curve among the target locations. As a result, the mean relative error with the converted discharge was within 10%. That is, in flood season, the discharge estimation method using one maximum surface velocity measurement, index velocity method, and velocity profile method can be applied to develop high-level extrapolation, therefore, it is judged that the reliability for the range of extrapolation estimation could be improved. Therefore, the discharge estimation method using the surface velocity is expected to become a fast and efficient discharge measurement method during the flood season.