• Title/Summary/Keyword: Radius error

Search Result 276, Processing Time 0.029 seconds

Similarity Analysis for the Dispersion of Spiraling Modes on Metallic Nanowire to a Planar Thin Metal Layer

  • Lee, Dong-Jin;Park, Se-Geun;Lee, Seung-Gol;O, Beom-Hoan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.538-542
    • /
    • 2013
  • We propose a simple model to elucidate the dispersion behavior of spiraling modes on silver nanowire by finding correspondence parameters and building a simple equivalent relationship with the planar insulator-metal-insulator geometry. The characteristics approximated for the proposed structure are compared with the results from an exact solution obtained by solving Maxwell's equation in cylindrical coordinates. The effective refractive index for our proposed equivalent model is in good agreement with that for the exact solution in the 400-2000 nm wavelength range. In particular, when the radius of the silver nanowire is 100 nm, the calculated index shows typical improvements; the average percentage error for the real part of the effective refractive index is reduced to only 5% for the $0^{th}$ order mode (11.9% in previous results) and 1.5% for the $1^{st}$ order mode (24.8% in previous results) in the 400-800 nm wavelength range. This equivalent model approach is expected to provide further insight into understanding the important behavior of nanowire waveguides.

Analysis of Golf Ball Mobility and Balancing based on IoT Sports Environments

  • Lee, Tae-Gyu
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.78-86
    • /
    • 2019
  • Recently, IoT researches using sensor data based on embedded networks in various fields including healthcare and sports have been continuously attempted. This study analyzes golf ball mobility to support IoT application in golf sports field. Generally, since the difference in density occurs due to the condition of the inner material and the abnormal state at the time of the outer skin joining during the manufacturing of the golf ball, the weight of each subset is equal for any two points with the same radius in the sphere cannot be guaranteed. For this reason, the deflected weight of the sphere has the undesirable effect of hitting the ball in a direction in which the weight of the ball is heavy. In this study, it is assumed that there is a unique center of gravity of the ball, and even if the golf ball cannot be manufactured perfectly, it wants to establish the basic principle to accurately recognize or mark the putting line based on the center of gravity. In addition, it is evaluated how the mobility of the golf ball with a deviation from the center of gravity of the golf ball affects the progress path (or movement direction) and the moving distance (or carry distance) after the golfer hits. The basic model of the mobility of the golf ball can help the golfer exercise model and the correlation analysis. The basic model of the mobility of the golf ball can help the golfer exercise model and the correlation analysis.

Reliability analysis of laminated composite shells by response surface method based on HSDT

  • Thakur, Sandipan N.;Chakraborty, Subrata;Ray, Chaitali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.203-216
    • /
    • 2019
  • Reliability analysis of composite structures considering random variation of involved parameters is quite important as composite materials revealed large statistical variations in their mechanical properties. The reliability analysis of such structures by the first order reliability method (FORM) and Monte Carlo Simulation (MCS) based approach involves repetitive evaluations of performance function. The response surface method (RSM) based metamodeling technique has emerged as an effective solution to such problems. In the application of metamodeling for uncertainty quantification and reliability analysis of composite structures; the finite element model is usually formulated by either classical laminate theory or first order shear deformation theory. But such theories show significant error in calculating the structural responses of composite structures. The present study attempted to apply the RSM based MCS for reliability analysis of composite shell structures where the surrogate model is constructed using higher order shear deformation theory (HSDT) of composite structures considering the uncertainties in the material properties, load, ply thickness and radius of curvature of the shell structure. The sensitivity of responses of the shell is also obtained by RSM and finite element method based direct approach to elucidate the advantages of RSM for response sensitivity analysis. The reliability results obtained by the proposed RSM based MCS and FORM are compared with the accurate reliability analysis results obtained by the direct MCS by considering two numerical examples.

Anomaly Detection and Diagnostics (ADD) Based on Support Vector Data Description (SVDD) for Energy Consumption in Commercial Building (SVDD를 활용한 상업용 건물에너지 소비패턴의 이상현상 감지)

  • Chae, Young-Tae
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.579-590
    • /
    • 2018
  • Anomaly detection on building energy consumption has been regarded as an effective tool to reduce energy saving on building operation and maintenance. However, it requires energy model and FDD expert for quantitative model approach or large amount of training data for qualitative/history data approach. Both method needs additional time and labors. This study propose a machine learning and data science approach to define faulty conditions on hourly building energy consumption with reducing data amount and input requirement. It suggests an application of Support Vector Data Description (SVDD) method on training normal condition of hourly building energy consumption incorporated with hourly outdoor air temperature and time integer in a week, 168 data points and identifying hourly abnormal condition in the next day. The result shows the developed model has a better performance when the ${\nu}$ (probability of error in the training set) is 0.05 and ${\gamma}$ (radius of hyper plane) 0.2. The model accuracy to identify anomaly operation ranges from 70% (10% increase anomaly) to 95% (20% decrease anomaly) for daily total (24 hours) and from 80% (10% decrease anomaly) to 10%(15% increase anomaly) for occupied hours, respectively.

Long-term behavior of prestressed concrete beam with corrugated steel web under sustained load

  • Motlagh, Hamid Reza Ebrahimi;Rahai, Alireza
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.809-819
    • /
    • 2022
  • This paper proposes a method to predict the deflection of prestressed concrete (PC) beams with corrugated steel web (CSW) under constant load concerning time-dependent variation in concrete material. Over time, the top and bottom concrete slabs subjected to asymmetric compression experience shrinkage and creep deformations. Here, the classical Euler-Bernoulli beam theory assumption that the plane sections remain plane is not valid due to shear deformation of CSW. Therefore, this study presents a method based on the first-order shear deformation to find the long-term deflection of the composite beams under bending by considering time effects. Two experimental prestressed beams of this type were monitored under their self-weight over time, and the theoretical results were compared with those data. Additionally, 3D analytical models of the experimental beams were used according to material properties, and the results were compared with two previous cases. There was good consistency between the analytical and numerical results with low error, which increased by wave radius. It is concluded that the proposed method could reliably be used for design purposes.

A development of accuracy diagnostic system 2-dimensional circular interpolation of machining centers (Machining Center의 2차원 원호보간정밀도 진단 System의 개발)

  • Kim, Jeong-Soon;Namgung, Suk;Tsutusmi, Masacmi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.54-65
    • /
    • 1993
  • The paper describes and alternative method based on a new idea to measure the circular movement of machining centers. ISO has employed three testing methods for the acceptance tests of machine tools; the first is a rotating one-dimensional probe method, the second is a two-dimensional probe and a master circular ring, and the third is a kinematic ball bar. The last two methods were proposed and introduced by W. Knapp and J. B. Bryan, respectively. The newly developed method is superior to above two methods; the rotating angle can be detected and the rotating radius is variable. Circular movement errors of machining centers were investigated by the analysis of data measured by R- .THETA. method. Followint observations are obtained 1) The errors which depend on positions, i.e., periodical errors by the pitch of ball screws, errors by compensation of backlash and errors by perpendicularity of X and Y-axis, were analyzed. 2) The errors which depend on NC control system, i.e., errors by the unbalance of position-loop-gaians, errors by velocity-loop-gains and errors by feed speeds, were quantiatively analyzed. 3) The method of extracting error information, which uses moving technique of averaging angle and fourier's analysis data mesured by the R- .THETA. method, was proposed.

  • PDF

Study on the Pad Wear Profile Based on the Conditioner Swing Using Deep Learning for CMP Pad Conditioning (CMP 패드 컨디셔닝에서 딥러닝을 활용한 컨디셔너 스윙에 따른 패드 마모 프로파일에 관한 연구)

  • Byeonghun Park;Haeseong Hwang;Hyunseop Lee
    • Tribology and Lubricants
    • /
    • v.40 no.2
    • /
    • pp.67-70
    • /
    • 2024
  • Chemical mechanical planarization (CMP) is an essential process for ensuring high integration when manufacturing semiconductor devices. CMP mainly requires the use of polyurethane-based polishing pads as an ultraprecise process to achieve mechanical material removal and the required chemical reactions. A diamond disk performs pad conditioning to remove processing residues on the pad surface and maintain sufficient surface roughness during CMP. However, the diamond grits attached to the disk cause uneven wear of the pad, leading to the poor uniformity of material removal during CMP. This study investigates the pad wear rate profile according to the swing motion of the conditioner during swing-arm-type CMP conditioning using deep learning. During conditioning, the motion of the swing arm is independently controlled in eight zones of the same pad radius. The experiment includes six swingmotion conditions to obtain actual data on the pad wear rate profile, and deep learning learns the pad wear rate profile obtained in the experiment. The absolute average error rate between the experimental values and learning results is 0.01%. This finding confirms that the experimental results can be well represented by learning. Pad wear rate profile prediction using the learning results reveals good agreement between the predicted and experimental values.

The Study of Technical Error Analysis on BMD Using DEXA (이중 에너지 X선 흡수 계측법을 이용한 BMD 검사 시 발생할 수 있는 기술적인 오류 분석)

  • Kang, Yeong-Han;Jo, Gwang-Ho
    • Journal of radiological science and technology
    • /
    • v.29 no.4
    • /
    • pp.229-236
    • /
    • 2006
  • Purpose: This study was conducted to search for the type of technical error in DEXA(dual-energy X-ray absorptiometry) and the effect of error to measurement of BMD. Materials and Methods: The changes of BMD($g/cm^2$, T-score) by patients information(Age, Weight, Height, Manopause age) input error and Confirming ROI error were investigated. Using spine phantom, we canned 10 times by age(5, 10), weight(10, 20 kg), height(5, 10 cm), manopause age(5, 10) increase & decrease respectively. Scanning region(L-spine, femur, Forearm) of 10 patients was calculated by changing ROI respectively. Analysis of difference for mean(precision 1%) were carried out. Results: The error of patient information(Age, Weight, Height, Manopause age) was not changed differently. In confirming ROI, the BMD and T-score of L-spine involving T-12 was decreased to $0.063\;g/cm^2$, 0.3 and involving L-5 increased to $0.077\;g/cm^2$, 0.5. In narrowing 1 cm of vertical line of ROI, the BMD and T-score decreased to $0.006\;g/cm^2$, 0.1 and in 2 cm, $0.021\;g/cm^2$, 0.15, each. In hip ROI, Upper and left shift(0.5 cm) of line was not influenced BMD and T-score. In 0.5 cm lower shift(lesser trochanter below), the BMD and T-score increased $0.031\;g/cm^2$, 0.3 and in 1 cm $0.094\;g/cm^2$, 0.65, each. In forearm ROI, the BMD and T-score decreased $0.042\;g/cm^2$, 0.9 involving 1 cm lower wrist. And expanding 1 cm of vertical line, the BMD and T-score decreased $0.008\;g/cm^2$, 0.1 and in 2 cm, $0.021\;g/cm^2$, 0.3, each. The L-spine, hip, forearm ROI error was changed differently. Conclusion: There are so many kinds of technical error in BMD processing. Errors according to age, weight, height, manopause age did not influent to $BMD(g/cm^2)$ and T-score. There are mean differences BMD and T-score in confirming ROI. For the precision exam, in L-spine processing, L1-4 have to confirmed without shift of ROI vertical line. In hip processing, the ROI have to included greater trochanter, femur head and lesser trochanter. In forearm processing, the ROI have to included wrist, radius and ulnar.

  • PDF

Study on the Correlation between Refractive error and Components of Eye's Optical system in Children and Teenagers in an Optometric Practice (안과 병원을 내원한 소아 청소년의 굴절이상과 안광학 성분간의 상관관계 연구)

  • Ha, Na-Ri;Kim, Hyun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.1
    • /
    • pp.67-74
    • /
    • 2012
  • Purpose: The purpose of this study to evaluate visual acuity and refractive state and measure and analyze the components of eye's optical system in children and teenagers. Methods: With subjects of 124 (230 eyes) children and teenagers who had no eye diseases, correlation between the correlation between refractive errors and component's of eye's optical system was investigated. The spherical equivalent power of cycloplegic clinical refraction or manifest clinical refraction(SE), corneal power(CP), corneal radius(CR), axial length(AL), anterior chamber depth(ACD) and axial length to corneal radius (AL/CR) ratio were measured and analysed. Results: the SE was negatively correlated with the AL(r = -0.80, p = 0.00), the ACD(r = -0.35, p = 0.00) and the CR(r = -0.11, p=0.00) and positively correlated with the CP(r = +0.11, p=0.00). The AL was positively correlated with the AL/CR ratio (r = +0.84, p = 0.00), the ACD(r = +0.47, p=0.00) and the CR(r = +0.38, p = 0.00) and negatively correlated with the CP(r = -0.38, p=0.00). The CR was negatively correlated with CP(r = -1.00, p = 0.00), the AL/CR ratio(r = -0.19, p = 0.00) and the ACD(r = -0.06, p = 0.39). The CP was positively correlated with the AL/CR ratio(r = +0.19, p = 0.00) and the ACD(r = +0.06, p = 0.39). The ACD was positively correlated with the AL/CR ratio(r = 0.53, p = 0.00). Conclusions: the highest change of refractive errors was shown that the AL/CR ratio was a very important indicator for diagnosing the refractive errors of the children and teenagers.

OPTICAL PROPERTY AND ALIGNMENT OF KAO WIDE FIELD TELESCOPE (NEOPAT-3) (광시야 망원경 3호기 (NEOPAT-3)의 광학계 특성 및 조정)

  • Yuk, In-Soo;Kyeong, Jae-Mann;Yoon, Joh-Na;Yoon, Jae-Hyuck;Yim, Hong-Suh;Moon, Hong-Kyu;Han, Won-Yong;Byun, Yon-Ik;Kang, Yong-Woo;Yu, Sung-Yeol
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.417-428
    • /
    • 2004
  • We have investigated the optical property of the KAO(Korea Astronomy Observatory) wide field telescope (named NEOPAT-3; Near Earth Object and Satellite Patrol-3) and aligned optical system. The NEOPAT-3 is restricted to V,R,I-filters because of the refractive property of the correcting lens system. Because of the fast focal ratio, the optical performance of the NEOPAT-3 is very sensitive to its alignment factors of the optical system. To make the spot radius smaller than $8{\mu}m$ in rms over 2degree${\times}2$degree field, the optical system must satisfy the following conditions: 1) The tilt error between detector plane and focal plane should be less than 0.05degree. 2) The decenter error between the primary mirror and the correcting lens system should be less than 1mm. 3) The distance error between the primary mirror and the correcting lens system should be less than 2.3mm. In order to align the optical system accurately, we measured the aberrations of the telescope quantitatively by means of curvature sensing technique. NEOPAT-3 is installed temporary on the roof of the TRAO(Taeduk Radio Astronomy Observatory) main building to normalize system performance and to develop automatic observation.