• Title/Summary/Keyword: Radiotherapy planning

Search Result 332, Processing Time 0.024 seconds

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

Analysis of the Causes of Subfrontal Recurrence in Medulloblastoma and Its Salvage Treatment (수모세포종의 방사선치료 후 전두엽하방 재발된 환자에서 원인 분석 및 구제 치료)

  • Cho Jae Ho;Koom Woong Sub;Lee Chang Geol;Kim Kyoung Ju;Shim Su Jung;Bak Jino;Jeong Kyoungkeun;Kim Tae_Gon;Kim Dong Seok;Choi oong-Uhn;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.22 no.3
    • /
    • pp.165-176
    • /
    • 2004
  • Purpose: Firstly, to analyze facto in terms of radiation treatment that might potentially cause subfrontal relapse in two patients who had been treated by craniospinal irradiation (CSI) for medulloblastoma, Secondly, to explore an effective salvage treatment for these relapses. Materials and Methods: Two patients who had high-risk disease (T3bMl, T3bM3) were treated with combined chemoradiotherapy CT-simulation based radiation-treatment planning (RTP) was peformed. One patient who experienced relapse at 16 months after CSI was treated with salvage surgery followed by a 30.6 Gy IMRT (intensity modulated radiotherapy). The other patient whose tumor relapsed at 12 months after CSI was treated by surgery alone for the recurrence. To investigate factors that might potentially cause subfrontal relapse, we evaluated thoroughly the charts and treatment planning process including portal films, and tried to find out a method to give help for placing blocks appropriately between subfrotal-cribrifrom plate region and both eyes. To salvage subfrontal relapse in a patient, re-irradiation was planned after subtotal tumor removal. We have decided to treat this patient with IMRT because of the proximity of critical normal tissues and large burden of re-irradiation. With seven beam directions, the prescribed mean dose to PTV was 30.6 Gy (1.8 Gy fraction) and the doses to the optic nerves and eyes were limited to 25 Gy and 10 Gy, respectively. Results: Review of radiotherapy Portals clearly indicated that the subfrontal-cribriform plate region was excluded from the therapy beam by eye blocks in both cases, resulting in cold spot within the target volume, When the whole brain was rendered in 3-D after organ drawing in each slice, it was easier to judge appropriateness of the blocks in port film. IMRT planning showed excellent dose distributions (Mean doses to PTV, right and left optic nerves, right and left eyes: 31.1 Gy, 14.7 Gy, 13.9 Gy, 6.9 Gy, and 5.5 Gy, respectively. Maximum dose to PTV: 36 Gy). The patient who received IMRT is still alive with no evidence of recurrence and any neurologic complications for 1 year. Conclusion: To prevent recurrence of medulloblastoma in subfrontal-cribriform plate region, we need to pay close attention to the placement of eye blocks during the treatment. Once subfrontal recurrence has happened, IMRT may be a good choice for re-irradiation as a salvage treatment to maximize the differences of dose distributions between the normal tissues and target volume.

The Benefit of Individualized Custom Bolus in the Postmastectomy Radiation Therapy : Numerical Analysis with 3-D Treatment Planning (유방전절제술 후 방사선치료를 위한 조직보상체 개발 및 3차원 치료계획을 통한 유용성 분석)

  • Cho Jae Ho;Cho Kwang Hwan;Keum Kichang;Han Yongyih;Kim Yong Bae;Chu Sung Sil;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.82-93
    • /
    • 2003
  • Purpose : To reduce the Irradiation dose to the lungs and heart in the case of chest wail irradiation using an oppositional electron beam, we used an Individualized custom bolus, which was precisely designed to compensate for the differences In chest wall thickness. The benefits were evaluated by comparing the normal tissue complication probablilties (NTCPS) and dose statistics both with and without boluses. Materials and Methods : Boluses were made, and their effects evaluated in ten patients treated using the reverse hockey-stick technique. The electron beam energy was determined so as to administer 80% of the irradiation prescription dose to the deepest lung-chest wall border, which was usually located at the internal mammary lymph node chain. An individualized custom bolus was prepared to compensate for a chest wall thinner than the prescription depth by meticulously measuring the chest wall thickness at 1 emf intervals on the planning CT Images. A second planning CT was obtained overlying the individuailzed custom bolus for each patient's chest wall. 3-D treatment planning was peformed using ADAC-Pinnacle$^{3}$ for all patients with and without bolus. NTCPS based on 'the Lyman-Kutcher' model were analyzed and the mean, maximum, minimum doses, V$_{50}$ and V$_{95}$ for 4he heari and lungs were computed. Results .The average NTCPS in the ipsliateral lung showed a statistically significant reduction (p<0.01), from 80.2${\pm}$3.43% to 47.7${\pm}$4.61%, with the use of the individualized custom boluses. The mean lung irradiation dose to the ipsilateral iung was also significantly reduced by about 430 cGy, Trom 2757 cGy to 2,327 cGy (p<0.01). The V$_{50}$ and V$_{95}$ in the ipsilateral lung markedly decreased from the averages of 54.5 and 17.4% to 45.3 and 11.0%, respectively. The V$_{50}$ and V$_{95}$ In the heart also decreased from the averages of 16.8 and 6.1% to 9.8% and 2.2%, respectively. The NTCP In the contralateral lung and the heart were 0%, even for the cases with no bolus because of the small effective mean radiation volume values of 4.4 and 7.1%, respectively Conclusion : The use of an Individualized custom bolus in the radiotherapy of postrnastectorny chest wall reduced the NTCP of the ipsilateral lung by about 24.5 to 40.5%, which can improve the complication free cure probability of breast cancer patients.

Comparison of the Dose Distributions with Beam Arrangements in the Stereotactic Body Radiotherapy (SBRT) for Primary Lung Cancer (원발성 폐암에서 정위적 체부 방사선치료의 빔 배열에 따른 선량분포의 비교)

  • Yea, Ji Woon
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.110-115
    • /
    • 2014
  • To compare 2 beam arrangements, circumferential equally angles (EA) beams or partially angles (PA) beams for stereotactic body radiation therapy (SBRT) of primary lung cancer for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques with respect to target, ipsilateral lung, contralateral lung, and organs-at-risk (OAR) dose-volume metrics, as well as treatment delivery efficiency. Data from 12 patients, four treatment plans were generated per data sets ($IMRT_{EA}$, $IMRT_{PA}$, $VMAT_{EA}$, $VMAT_{PA}$). The prescribed dose (PD) was 60 Gy in 4 fractions to 95% of the planning target volume (PTV) for a 6-MV photon beam. When compared with the IMRT and VMAT treatment plan for 2 beams, conformity index, homogeneity index, high dose spillage, D2 cm (Dmax at a distance ${\geq}2cm$ beyond the PTV), R50 (ratio of volume circumscribed by the 50% isodose line and the PTV), resulted in similar. But Dmax of the Organ at risk (OAR), spinal cord, trachea, resulted in differ between four treatment plans. Especially $HDS_{location}$ showed big difference in 21.63% vs. 26.46%.

The Feasibility Study of photoconductor materials for the use of a dosimeter in Radiotherapy (광도전체 물질의 치료 방사선 선량계 적용을 위한 가능성 연구)

  • Jang, Giwon;Shin, Jungwook;Oh, Kyungmin;Park, Sungkwang;Kim, Jinyoung;Park, Jikoon;Nam, Sanghee
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.81-84
    • /
    • 2013
  • The use of the dosimetry have been increasingly recognized as high radiation energy and radiation treatment planning(RTP) have rapidly developed in radiotherapy. There are many types of detectors for the dosimetry such as ionization chamber, film, TLD, diode, and etc. Among such detectors, the diode detector uses a photoconductor materials that generate electrical signals by the incident radiation energy. Though many research groups are recently interested in such materials, there is few experimental results except for silicon in the radiation therapy field. In this study, the feasibility of photoconductor materials was verified as a dosimeter through the evaluation of response properties at a high radiation energy. For the fabricated detectors based on $HgI_2$ and $PbI_2$, reproducibility, linearity, and pulse-rate response were analyzed. Such evaluations are essential factors for the use of dosimeter. From results, linearity and reproducibility of the fabricated $HgI_2$ detector indicated about 7% error. The fabricated $PbI_2$ detector showed 1.7% error in linearity, and 12.2% error in reproducibility.

Reduction of Patient Dose in Radiation Therapy for the Brain Tumors by Using 2-Dimensional Vertex or Oblique Vertex Beam Technique

  • Kim, Il-Han;Chie, Eui-Kyu;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.225-231
    • /
    • 2003
  • Up-front irradiation technique as 3-dimensional conformation, or intensity modulation has kept large proportion of brain tumors from being complicated with acute radiation reactions in the normal tissue during or shortly after radiotherapy. For years, we've cannot help but counting on 2-D vertex beam technique to reduce acute reactions in the brain tumor patients because we're not equipped with 3-dimensional planning system. We analyzed its advantages and limitations in the clinical application. From 1998 to 2001, vertex or oblique vertex beams were applied to 35 patients with primary brain tumor and 25 among them were eligible for this analysis. Vertex(V) plans were optimized on the reconstructed coronal planes. As the control, we took the bilateral opposed techniques(BL) otherwise being applied. We compared the volumes included in 105% to 50% isodose lines of each plan. We also measured the radiation dose at various extracranial sites with TLD. With vertex techniques, we reduced the irradiated volumes of contralateral hemisphere and prevented middle ear effusion at contralateral side. But the low dose volume increased outside 100%; the ratio of V to BL in irradiated volume included in 100%, 80%, 50% was 0.55+/-0.10, 0.61+/-0.10, and 1.22+/-0.21, respectively. The hot area within 100% isodose line almost disappeared with vertex plan; the ratio of V to BL in irradiated volume included in 103%, 105%, 108% was 0.14+/-0.14, 0.05./-0.17, 0.00, respectively. The dose distribution within 100% isodose line became more homogeneous; the ratio of volume included in 103% and 105% to 100% was 0.62+/-0.14 and 0.26+/-0.16 in BL whereas was 0.16+/-0.16 and 0.02+/-0.04 in V. With the vertex techniques, extracranial dose increased up to $1{\sim}3%$ of maximum dose in the head and neck region except submandibular area where dose ranged 1 to 21%. From this data, vertex beam technique was quite effective in reduction of unnecessary irradiation to the contralateral hemispheres, integral dose, obtaining dose homogeneity in the clinical target. But it was associated with volume increment of low dose area in the brain and irradiation toward the head and neck region otherwise being not irradiated at all. Thus, this 2-D vertex technique can be a useful quasi-conformal method before getting 3-D apparatus.

Morphologic change of rectosigmoid colon using belly board and distended bladder protocol

  • Cho, Yeona;Chang, Jee Suk;Kim, Mi Sun;Lee, Jaehwan;Byun, Hwakyung;Kim, Nalee;Park, Sang Joon;Keum, Ki Chnag;Koom, Woong Sub
    • Radiation Oncology Journal
    • /
    • v.33 no.2
    • /
    • pp.134-141
    • /
    • 2015
  • Purpose: This study investigates morphologic change of the rectosigmoid colon using a belly board in prone position and distended bladder in patients with rectal cancer. We evaluate the possibility of excluding the proximal margin of anastomosis from the radiation field by straightening the rectosigmoid colon. Materials and Methods: Nineteen patients who received preoperative radiotherapy between 2006 and 2009 underwent simulation in a prone position (group A). These patients were compared to 19 patients treated using a belly board in prone position and a distended bladder protocol (group B). Rectosigmoid colon in the pelvic cavity was delineated on planning computed tomography (CT) images. A total dose of 45 Gy was planned for the whole pelvic field with superior margin of the sacral promontory. The volume and redundancy of rectosigmoid colon was assessed. Results: Patients in group B had straighter rectosigmoid colons than those in group A (no redundancy; group A vs. group B, 10% vs. 42%; p = 0.03). The volume of rectosigmoid colon in the radiation field was significantly larger in group A (56.7 vs. 49.1 mL; p = 0.009). In dose volume histogram analysis, the mean irradiated volume was lower in patients in group B (V45 27.2 vs. 18.2 mL; p = 0.004). In Pearson correlation coefficient analysis, the in-field volume of rectosigmoid colon was significantly correlated with the bladder volume (R = 0.86, p = 0.003). Conclusion: Use of a belly board and distended bladder protocol could contribute to exclusion of the proximal margin of anastomosis from the radiation field.

Quantitative Evaluation of Patient Positioning Error Using CBCT 3D Gamma Density Analysis in Radiotherapy

  • Lee, Soon Sung;Min, Chul Kee;Cho, Gyu Suk;Han, Soorim;Kim, Kum Bae;Jung, Haijo;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.149-155
    • /
    • 2017
  • Radiotherapy patients should maintain their treatment position as patient setup is very important for accurate treatment. In this study, we evaluated patient setup error quantitatively according to Cone-Beam Computed Tomography (CBCT) Gamma Density Analysis using Mobius CBCT. The adjusted setup error to the $QUASAR^{TM}$ phantom was moved artificially in the superior and lateral direction, and then we acquired the CBCT image according to the phantom setup error. To analyze the treatment setup error quantitatively, we compared values suggested in the CBCT system with the Mobius CBCT. This allowed us to evaluate the setup error using CBCT Gamma Density Analysis by comparing the planning CT with the CBCT. In addition, we acquired the 3D-gamma density passing rate according to the gamma density criteria and phantom setup error. When the movement was adjusted to only the phantom body or 3 cm diameter target inserted in the phantom, the CBCT system had a difference of approximately 1 mm, while Mobius CBCT had a difference of under 0.5 mm compared to the real setup error. When the phantom body and target moved 20 mm in the Mobius CBCT, there are 17.9 mm and 13.5 mm differences in the lateral and superior directions, respectively. The CBCT gamma density passing rate was reduced according to the increase in setup error, and the gamma density criteria of 0.1 g/cc/3 mm has 10% lower passing rate than the other density criteria. Mobius CBCT had a 2 mm setup error compared with the actual setup error. However, the difference was greater than 10 mm when the phantom body moved 20 mm with the target. Therefore, we should pay close attention when the patient's anatomy changes.

Radiation therapy for gastric mucosa-associated lymphoid tissue lymphoma: dose-volumetric analysis and its clinical implications

  • Lim, Hyeon Woo;Kim, Tae Hyun;Choi, Il Ju;Kim, Chan Gyoo;Lee, Jong Yeul;Cho, Soo Jeong;Eom, Hyeon Seok;Moon, Sung Ho;Kim, Dae Yong
    • Radiation Oncology Journal
    • /
    • v.34 no.3
    • /
    • pp.193-201
    • /
    • 2016
  • Purpose: To assess the clinical outcomes of radiotherapy (RT) using two-dimensional (2D) and three-dimensional conformal RT (3D-CRT) for patients with gastric mucosa-associated lymphoid tissue (MALT) lymphoma to evaluate the effectiveness of involved field RT with moderate-dose and to evaluate the benefit of 3D-CRT comparing with 2D-RT. Materials and Methods: Between July 2003 and March 2015, 33 patients with stage IE and IIE gastric MALT lymphoma received RT were analyzed. Of 33 patients, 17 patients (51.5%) were Helicobacter pylori (HP) negative and 16 patients (48.5%) were HP positive but refractory to HP eradication (HPE). The 2D-RT (n = 14) and 3D-CRT (n = 19) were performed and total dose was 30.6 Gy/17 fractions. Of 11 patients who RT planning data were available, dose-volumetric parameters between 2D-RT and 3D-CRT plans was compared. Results: All patients reached complete remission (CR) eventually and median time to CR was 3 months (range, 1 to 15 months). No local relapse occurred and one patient died with second primary malignancy. Tumor response, survival, and toxicity were not significantly different between 2D-RT and 3D-CRT (p > 0.05, each). In analysis for dose-volumetric parameters, $D_{max}$ and CI for PTV were significantly lower in 3D-CRT plans than 2D-RT plans (p < 0.05, each) and $D_{mean}$ and V15 for right kidney and $D_{mean}$ for left kidney were significantly lower in 3D-CRT than 2D-RT (p < 0.05, each). Conclusion: Our data suggested that involved field RT with moderate-dose for gastric MALT lymphoma could be promising and 3D-CRT could be considered to improve the target coverage and reduce radiation dose to the both kidneys.

Measurement of Skin Dose for Rectal Cancer Patients in Radiotherapy using Optically Stimulated Luminescence Detectors (OSLDs) (광자극발광선량계(OLSDs)를 이용한 직장암 방사선치료 환자의 피부선량 측정)

  • Im, In-Chul;Yu, Yun-Sik;Lee, Jae-Seung
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.2
    • /
    • pp.86-92
    • /
    • 2011
  • This study used the optically stimulated luminescence dosimeters (OSLDs), recently, received the revaluation of usefulness in vivo dosimetry, and the diode detecters to measure the skin dose of patient with the rectal cancer. The measurements of dose delivered were compared with the planned dose from the treatment planning system (TPS). We evaluated the clinical application of OSDs in radiotherapy. We measured the calibration factor of OSLDs and used the percent depth dose to verified, also, we created the three point of surface by ten patients of rectal cancer to measured. The calibration factors of OSLD was 1.17 for 6 MV X-ray and 1.28 for 10 MV X-ray, demonstrating the energy dependency of X-ray beams. Comparison of surface dose measurement using the OSLDs and diode detectors with the planned dose from the TPS, The skin dose of patient was increased 1.16 ~ 2.83% for diode detectors, 1.36 ~ 2.17% for OSLDs. Especially, the difference between planned dose and the delivery dose was increased in the perineum, a skin of intense flexure region, and the OSLDs as a result of close spacing of measuring a variate showed a steady dose verification than the diode detecters. Therefore, on behalf of the ionization chamber and diode detecters, OSLDs could be applied clinically in the verification of radiation dose error and in vivo dosimety. The research on the dose verification of the rectal cancer in the around perineal, a surface of intense flexure region, suggest continue to be.