• Title/Summary/Keyword: Radioprotective food

Search Result 25, Processing Time 0.024 seconds

The Radioprotective Effects of Bu-Zhong-Yi-Qi-Tang as a Prescriptions of Traditional Chinese Medicine in Irradiated Mice

  • Kim, Sung-Ho;Kim, Se-Ra;Heon Oh;Yang, Jung-Ah;Jo, Sung-Kee;Byun, Myung-Woo;Yee, Sung-Tae
    • Proceedings of the Korean Society of Veterinary Pathology Conference
    • /
    • 2000.09a
    • /
    • pp.21-21
    • /
    • 2000
  • We performed this study to determine the effect of Bu-Zhong-Yi-Qi-Tang, as a prescription of traditional Oriental medicine, and its major ingredients on jejunal crypt survival, endogenous spleen colony formation, and apoptosis in jejunal crypt cells of mice irradiated with high and low dose of r-radiation. Bu-Zhong-Yi-Qi-Tang administration before irradiation protected the jejunal crypts (p<0.0001), increased the formation of endogenous spleen colony (p<0.05) and reduced the frequency of radiation-induced apoptosis (p<0.05). (omitted)

  • PDF

Modification of Radiation Response in Mice by Panax ginseng and Diethyldithiocarbamate

  • Kim, Sung-Ho;Son, Chang-Ho;Nah, Seung-Yeol;Jo, Sung-Kee;Byun, Myung-Woo;Shin, Dong-Ho
    • Proceedings of the Korean Society of Veterinary Pathology Conference
    • /
    • 2001.09a
    • /
    • pp.22-22
    • /
    • 2001
  • We performed this study to determine the effect of Panax ginseng and its fractions on jejunal crypt survival, endogenous spleen colony formation, and apoptosis in jejunal crypt cells of mice irradiated with high and low dose of $\gamma$-irradiation. The radioprotective effect of ginseng was compared with the effect of diethyldithiocarbamate (DDC). Ginseng administration before irradiation protected the jejunal crypts (p<0.005), increased the formation of endogenous spleen colony (p<0.005) and reduced the frequency of radiation-induced apoptosis (p<0.005). (omitted)

  • PDF

Modification of Gamma-radiation Response in Mice by Green Tea and Diethyldithiocarbamate (마우스에서 방사선 영향에 대한 녹차와 Diethyldithiocarbamate의 조절효과)

  • Kim, Se-Ra;Kim, Sung-Ho;Lee, Hae-June;Oh, Heon;Ryu, Si-Yun;Lee, Yun-Sil;Kim, Tae-Hwan;Jo, Sung-Kee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.1108-1113
    • /
    • 2003
  • We performed this study to determine the effect of green tea on jejunal crypt survival, endogenous spleen colony formation, and apoptosis in jejunal crypt cells of mice irradiated with high and low dose of gammairradiation. The radioprotective effect of green tea was compared with the effect of diethyldithiocarbamate (DDC). Jejunal crypts were protected by pretreatment of green tea (p<0.01). Green tea administration before irradiation resulted in an increase of the formation of endogenous spleen colony (p<0.05). The frequency of radiation-induced apoptosis in intestinal crypt cells was also reduced by pretreatment of green tea (p<0.05). The radioprotective effect on jejunal crypts and apoptosis in the DDC treated group appeared similar to those in the green tea treated groups. Treatment with DDC showed no significant modifying effects on the formation of endogenous spleen colony. These results indicated that green tea might be a useful radioprotector, especially since it is a relatively nontoxic natural product. Further studies are needed to characterize better the promotion nature of green tea and its components.

Case Study of Radiation Protection and Radiation Exposure (방사능 노출과 방사선 보호 사례 연구)

  • Young Sil Min
    • Advanced Industrial SCIence
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • Recently, it is increasing that a issue of concern about radiation exposure. It affects soil, water, air, crops, etc., and in the long term, environmental pollution and food pollution occur, and it is considered to cause social problems and economic damage. Radiation exposure causes diseases and health problems, but as a method for diagnosing diseases, nuclear medicine tests such as X-ray imaging, CT, and PET-CT are conducted, and radiation isotopes are exposed for the purpose of cancer treatment. A Hungarian case study on radiation in water, particularly drinking water, following the release of radioactive waste from Fukushima, and an examination of the Larsemann Hills area in Antarctica, found that it was within the prescribed radioactivity limits of drinking water recommended by the World Health Organization. We looked at radioprotective agents, focusing on DNA damage, cell and organ damage, and cancer, and also investigated various literatures on ACE inhibitors, antioxidants, and natural substances among restoration materials. Although exposed to radiation in everyday life, the reason why it can be safe is probably because there is a radiation protection material and a recovery material for radiation exposure, so we are trying to find possible materials.

Development of A New Herbal Composition HemoHIM as An Immune-Improving Agent Using Irradiated Animal Models (방사선조사 동물모델 이용 면역기능개선-생약복합물 헤모힘(HemoHIM)개발)

  • Jo, Seong-Gi
    • Radioisotope journal
    • /
    • v.21 no.4
    • /
    • pp.38-45
    • /
    • 2006
  • A new herbal composition. HemoHIM, was developed using irradiated animal models and was successfully applied as an immune-improving agent. In a view that the protection and recovery of immune, hematopoietic and self-renewal tissues are essential for radioprotective agents, HemoHIM was developed based on a novel combination of three edible herbs (Angelica Radix, Cnidii Rhizoma. Paeonin Radix) that meet all those requirements. HemoHIM significantly protected the immune and hematopoietic system and enhanced their recovery in y-irradiated mice. For the application of HemoHIM as a health functional food and a supplementary agent for the cancer patients, the efficacy of HemoHIM to improve the immune functions was further evaluated in immune-depressed animals and humans. Animal studies demonstrated that HemoHIM significantly improved the immune functions in cyclophosphamide-treated mice, aged mice, and dexamethasone-treated mice. In human studies, HemoHIM enhanced the immune activity and cytokine secretion in sub-healthy volunteers, and alleviated the severe leukocyre depression in cancer patients during radiation and chemotherapy. Based on these results, HemoHIM was approved by Korea FDA as a material of health functional food for immune function improvement and will be commercially available soon. This case of HemoHIM research and development suggested that irradiated animals can be good models for biological degenerations such as immune depression, self-renewal tissue damage, and aging for the development of biological modulators.

  • PDF

Inhibitory Effects of Panax ginseng C. A. Mayer Treated with High Temperature and High Pressure on Oxidative Stress (산화적 스트레스에 대한 고온고압처리 인삼의 억제 효과)

  • Yoon, Bo-Ra;Lee, Young-Jun;Hong, Hee-Do;Lee, Young-Chul;Kim, Young-Chan;Rhee, Young Kyoung;Kim, Kyung-Tack;Lee, Ok-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.800-806
    • /
    • 2012
  • Reactive oxygen species (ROS) are produced by oxidative stresses which cause various chronic diseases such as diabetes and obesity. Ginseng (Panax ginseng C.A. Mayer) has been reported to contain various biological activities such as anti-cancer, anti-diabetic, neuroprotective, radioprotective, anti-amnestic and anti-aging effects. In this study, we investigated the effects of Panax ginseng, treated with high temperatures and high pressures, on oxidative stress in C2C12 myoblasts and 3T3-L1 adipocytes. Oxidative stress was induced in the C2C12 cells through the introduction of $H_2O_2$ (1 mM), and cells were then treated with various ginseng preparations: dried white ginseng (DG), steamed ginseng (SG) and high temperature and high pressure treated ginseng (HG). In addition, 3T3-L1 preadipocytes were treated with various ginsengs for up to 8 days following standard induction of differentiation. Our results show that HG treatment significantly protected oxidative stress in both cell lines and enhanced gene expression of antioxidant enzymes. Therefore, in this study, we investigated the protective effects of ginseng on the oxidative stress of adipocytes and muscle cells.

Radiation Protection Effect of Mixed Extracts of Artemisia asiatica Nakai and Moringa oleifera Lam on Rats Uterus (흰쥐의 자궁에 대한 애엽-모링가 혼합추출물의 방사선 방호효과)

  • Lee, Yoon-Ji;Kim, Jang-Oh;Jeon, Chan-hee;Lee, Ji-Eun;Jeong, Geun-Woo;Jung, Do-Young;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.747-753
    • /
    • 2020
  • The purpose of this study was to examine the potential for the development of radioprotective agent in extracts manufactured by mixing Artemisia asiatica Nakai and Moringa oleifera Lam known as antioxidant food with the appropriate ratio. Their whole body were irradiated 7Gy radiation after oral administration of a mixed extract of Artemisia asiatica Nakai and Moringa oleifera Lam to SD Rat for two weeks. And 1 day, 7days, 21days later, changes in blood cell components, SOD activations and tissue changes in the uterus were observed.It was confirmed that the AM + IR group had a higher tendency to recover leukocyte (p<0.05) and platelet (p<0.05) levels than the IR group. It was also confirmed that SOD activity was increased and cell death was decreased in uterine tissue.Based on these results, the mixed extract of A and B is expected to be useful as a radiation protection agent capable of reducing blood cell and uterine damage caused by radiation exposure.

The radioprotective effects of radices herbs (대표적 근류 생약의 방사선 방호효과)

  • Kim, Sung-ho;Oh, Heon;Kim, Se-ra;Jo, Sung-kee;Byun, Myung-woo;Kim, Kil-soo;Lee, Jong-hwan;Shin, Dong-ho
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.1
    • /
    • pp.105-111
    • /
    • 2001
  • We performed this study to determine the effect of Jiegeng(Platycodon grandiflorum), Danggui(Angelica sinensis), Gancao(Glycyrrhiza glabla), Chaihu(Bupleurum falcatnosa), Shoudehuang(Rehmannia glutinosa), Huangqi(Satragalus membranaceus), Muxiang(Saussurea lappa), Yuanzhi(Polygala tenuifolia), Rensen(Panax ginseng) and Baishaoyao(Paeonia lactiflolia), as Oriental radices herbs, on jejunal crypt survival, endogenous spleen colony formation and apoptosis in jejunal crypt cells of mice irradiated with high and low dose of ${\gamma}-radiation$. Jiegeng(p<0.005), Danggui(p<0.0005), Gancao(p<0.005), Chaihu(p<0.05), Muxiang(p<0.05), Rensen(p<0.005) and Baishaoyao(p<0.005) were effective in intestinal crypt survival. Danggui(p<0.05), Chaihu(p<0.05), Shoudehuang(p<0.05), Huangqi(p<0.05), Rensan(p<0.005) and Baishaoyao(p<0.05) increased the formation of endogenous spleen colony. The frequency of radiation induced apoptosis was also reduced by pretreatment with Chaihu(p<0.05), Muxiang(p<0.005), Yuanzhi(p<0.05), Rensan(p<0.05) and Baishaoyao(p<0.05). Although the mechanisms of this effect remain to be elucidated, these results indicated that Danggui, Chaihu, Muxiang, Rensan and Baishaiyao might be a useful radioprotector, especially since it is a relatively nontoxic natural product.

  • PDF

Inhibition of Apoptosis by Elaeocarpus sylvestris in Mice Following Whole-body Exposure to Ionizing Radiation: Implications for Radioprotectors

  • Park, Eun-Jin;Lee, Nam-Ho;Ahn, Gin-Nae;Baik, Jong-Seok;Lee, Je-Hee;Hwang, Kyu-Kye;Park, Jae-Woo;Jee, Young-Heun
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.718-722
    • /
    • 2008
  • Elaeocarpus sylvestris var. ellipticus (E.S.), which contains 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose (PGG), is reported to have the ability to scavenge oxygen radicals, thereby protecting rat neuronal cells from oxidative damage. The potential of an E.S. extract, which contains a rich PGG, to protect radiosensitive lymphocytes and intestinal crypt cells from radiation injury induced by a single whole-body irradiation (WBI) in vivo was investigated. Our results demonstrated that in immune cells, E.S. treatment decreased the percent of tail DNA, a parameter of DNA damage, compared with levels in untreated, irradiated controls. Furthermore, apoptosis was significantly decreased in lymphocytes and intestinal crypt cells of E.S.-treated mice compared with irradiated controls. These results suggest that the E.S. extract can strengthen the radioresistance of radiosensitive lymphocytes and crypt cells by preventing apoptosis. Therefore, it was concluded that E.S. extract has the radioprotective effects in vivo through an inhibition of apoptosis.

Protective effect of Hizikia fusiforme on radiation-induced damage in splenocytes (방사선을 조사한 마우스에서 비장세포에 대한 톳의 보호 작용)

  • Kim, Areum;Bing, So Jin;Cho, Jinhee;Ahn, Ginnae;Lee, Ji-Hyeok;Jeon, You-Jin;Lee, Byung-Gul;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • The immune system is specifically sensitive to oxidative stress induced by ionizing radiation because of its rapid proliferative activity. For this reason, an instructive immune system is one of the best ways to minimize side effects, such immunodeficiency, of gamma radiation. Over the past few decades, several natural plants with antioxidant and immunomodulatory properties have been identified as adjuncts for nontoxic and successful radiotherapy. Hizikia fusiforme extract (HFE) containing plentiful dietary fiber and fucoidan is known for its instructive antioxidant capacity, immunomodulation abilities, and immune activation. In this study, we determined whether HFE protects radiosensitive immune cells from gamma radiation-induced damage. C57BL/6 mice were irradiated with gamma-ray. The effect of HFE on the ionizing radiation damage of immune cells was then evaluated with an MTT assay, 3H-thymidine incorporation assay, and PI staining. We found that HFE stimulated the proliferation of gamma-ray irradiated immune cells without cytotoxic effects. We also observed that HFE not only decreased DNA damage but also reduced gamma radiation-induced apoptosis of the immune cells. Our results suggest that HFE can protect immune cells from gamma-ray damage and may serve as an effective, non-toxic radioprotective agent.