• 제목/요약/키워드: Radionuclides migration

검색결과 41건 처리시간 0.023초

A Study About Radionuclides Migration Behavior in Terms of Solubility at Gyeongju Low- and Intermediate-Level Radioactive Waste (LILW) Repository

  • Park, Sang June;Byon, Jihyang;Lee, Jun-Yeop;Ahn, Seokyoung
    • 방사성폐기물학회지
    • /
    • 제19권1호
    • /
    • pp.113-121
    • /
    • 2021
  • A safety assessment of radioactive waste repositories is a mandatory requirement process because there are possible radiological hazards owing to radionuclide migration from radioactive waste to the biosphere. For a reliable safety assessment, it is important to establish a parameter database that reflects the site-specific characteristics of the disposal facility and repository site. From this perspective, solubility, a major geochemical parameter, has been chosen as an important parameter for modeling the migration behavior of radionuclides. The solubilities were derived for Am, Ni, Tc, and U, which were major radionuclides in this study, and on-site groundwater data reflecting the operational conditions of the Gyeongju low and intermediate level radioactive waste (LILW) repository were applied to reflect the site-specific characteristics. The radiation dose was derived by applying the solubility and radionuclide inventory data to the RESRAD-OFFSITE code, and sensitivity analysis of the dose according to the solubility variation was performed. As a result, owing to the low amount of radionuclide inventory, the dose variation was insignificant. The derived solubility can be used as the main input data for the safety assessment of the Gyeongju LILW repository in the future.

Numerical Modelling of Radionuclide Migration for the Underground Silo at Near-Field

  • Myunggoo Kang;Jaechul Ha
    • 방사성폐기물학회지
    • /
    • 제21권4호
    • /
    • pp.465-479
    • /
    • 2023
  • To ensure the safety of disposal facilities for radioactive waste, it is essential to quantitatively evaluate the performance of the waste disposal facilities by using safety assessment models. This paper addresses the development of the safety assessment model for the underground silo of Wolseong Low-and Immediate-Level Waste (LILW) disposal facility in Korea. As the simulated result, the nuclides diffused from the waste were kept inside the silo without the leakage of those while the integrity of the concrete is maintained. After the degradation of concrete, radionuclides migrate in the same direction as the groundwater flow by mainly advection mechanism. The release of radionuclides has a positive linear relationship with a half-life in the range of medium half-life. Additionally, the solidified waste form delays and reduces the migration of radionuclides through the interaction between the nuclides and the solidified medium. Herein, the phenomenon of this delay was implemented with the mass transfer coefficient of the flux node at numerical modeling. The solidification effects, which are delaying and reducing the leakage of nuclides, were maintained the integrity of the nuclides. This effect was decreased by increasing the half-life and the mass transfer coefficient of radionuclides.

Radiological Assessment of Environmental Impact of the IF-System Facility of the RAON

  • Lee, Cheol-Woo;Whang, Won Tae;Kim, Eun Han;Han, Moon Hee;Jeong, Hae Sun;Jeong, Sol;Lee, Sang-jin
    • Journal of Radiation Protection and Research
    • /
    • 제46권2호
    • /
    • pp.58-65
    • /
    • 2021
  • Background: The evaluation of skyshine distribution, release of airborne radioactive nuclides, and soil activation and groundwater migration were required for radiological assessment of the impact on the environment surrounding In-Flight (IF)-system facility of the RAON (Rare isotope Accelerator complex for ON-line experiment) accelerator complex. Materials and Methods: Monte Carlo simulation by MCNPX code was used for evaluation of skyshine and activation analysis for air and soil. The concentration model was applied in the estimation of the groundwater migration of radionuclides in soil. Results and Discussion: The skyshine dose rates at 1 km from the facility were evaluated as 1.62 × 10-3 μSv·hr-1. The annual releases of 3H and 14C were calculated as 9.62 × 10-5 mg and 1.19 × 10-1 mg, respectively. The concentrations of 3H and 22Na in drinking water were estimated as 1.22 × 10-1 Bq·cm-3 and 8.25 × 10-3 Bq·cm-3, respectively. Conclusion: Radiological assessment of environmental impact on the IF-facility of RAON was performed through evaluation of skyshine dose distribution, evaluation of annual emission of long-lived radionuclides in the air and estimation of soil activation and groundwater migration of radionuclides. As a result, much lower exposure than the limit value for the public, 1 mSv·yr-1, is expected during operation of the IF-facility.

주요 작물의 생육중에 침적한 $^{54}Mn,\;^{60}Co,\;^{85}Sr,\;^{137}Cs$ 의 지하이동 (Underground Migration of $^{54}Mn,\;^{60}Co,\;^{85}Sr\;and\;^{137}Cs$ Deposited during the Growth of Major Crop Plants)

  • 최용호;조재성;이창우;이명호;김상복;홍광희;최근식;이정호
    • Journal of Radiation Protection and Research
    • /
    • 제21권1호
    • /
    • pp.51-58
    • /
    • 1996
  • 2년간의 온실실험을 통하여 벼, 콩, 배추, 무의 생육초기와 생육후기에 $^{54}Mn,\;^{60}Co,\;^{85}Sr,\;^{137}Cs$의 혼합용액을 산성 양질사토로 상층부를 채운 재배상자내 담수 또는 토양의 표면에 가하고 작물수확 직후에 지하 $15{\sim}20cm$까지 토양길이에 따른 방사성 핵종의 농도분포를 조사하였다. 방사성 핵종의 농도는 토양깊이에 따라 지수함수적으로 감소하는 경향으로 처리한 방사능의 80%이상이 지하 $3{\sim}4cm$ 이내 에 분포하였다. 핵종간 지하로의 이동성은 대체로 $^{85}Sr>^{54}Mn>^{60}Co{\geq}^{137}Cs$의 순이었다. 재배작물간에 이동 정도는 벼 재배토양에서 가장 높았고 N, P, K의 시비량이 가장 적었던 콩 재배토양에서 가장 낮았다. 두 처리시기간 지하분포 양상의 차이는 침적후 시간경과에 따라 단위시간당 지하 1cm 밑으로 이동하는 방사능량이 감소한다는 것을 나타내었다. 작물의 생육 초기에 방사성 핵종을 가한 후 실시된 염화칼리와 석회의 동시첨가로 핵종의 지하이동은 밭작물에서는 변화가 없거나 다소 억제되었으나 벼에서는 약간 촉진되었다.

  • PDF

오이의 재배기간중 처리한 방사성 핵종의 토양;작물체간 전이계수 및 지하이동 (Soil-to-Plant Transfer Factors and Migration of Radionuclides Applied onto Soli during Growing Season of Cucumber)

  • 최용호;박효국;김상복;최근식;이정호
    • 한국환경농학회지
    • /
    • 제16권4호
    • /
    • pp.304-310
    • /
    • 1997
  • 오이의 파종 2일전 및 파종후 네 차례에 걸쳐 Mn-54, Co-60, Sr-85, Cs-137의 혼합용액을 온실내 재배상자의 토양에 처리하고 처리시기별 및 수확시기별 열매에 대한 전이계수($m^2$/㎏-fresh)를 측정하였다. 전이계수는 핵종, 처리시기 및 수확시기에 따라 최고 약 60배의 변이를 보였다. 처리시기에 따른 전이계수의 변화양상은 핵종간 및 수확시기간에 차이가 있었다. 핵종간에 전이계수는 대체로 Sr-85 > Mn-54 > Co-60 > Cs-137의 순이었다. 파종전 토양과의 혼합처리시 전이계수는 생육초기 토양표면 처리에 비해 Mn-54, Co-60, Cs-137의 경우 다소 높았으나 Sr-85의 경우 차이가 없었다. 생육초기 토양표면에 처리된 방사성 핵종의 토양층위별 농도는 재배종료후 토양 깊이에 따라 지수함수적으로 감소하고 처리량의 $80{\sim}99%$가 토심 3cm 이내에 분포하는 것으로 나타났다.핵종의 토양 침투성은 Sr-85 > Mn-54 > Co-60 > Cs-137의 순이었다. 본 연구결과는 오이의 재배기간중 토양의 방사능 오염시 열매내 방사성 핵종의 농도예측, 오이의 수확,소비 및 오이밭 제염 대책수립에 활용될 수 있다.

  • PDF

INITIAL ESTIMATION OF THE RADIONUCLIDES IN THE SOIL AROUND THE 100 MEV PROTON ACCELERATOR FACILITY OF PEFP

  • An, So-Hyun;Lee, Young-Ouk;Cho, Young-Sik;Lee, Cheol-Woo
    • Nuclear Engineering and Technology
    • /
    • 제39권6호
    • /
    • pp.747-752
    • /
    • 2007
  • The Proton Engineering Frontier Project (PEFP) has designed and developed a proton linear accelerator facility operating at 100 MeV - 20 mA. The radiological effects of such a nuclear facility on the environment are important in terms of radiation safety. This study estimated the production rates of radionuclides in the soil around the accelerator facility using MCNPX. The groundwater migration of the radioisotopes was also calculated using the Concentration Model. Several spallation reactions have occurred due to leaked neutrons, leading to the release of various radionuclides into the soil. The total activity of the induced radionuclides is approximately $2.98{\times}10^{-4}Bq/cm^3$ at the point of saturation. $^{45}Ca$ had the highest production rate with a specific activity of $1.78{\times}10^{-4}Bq/cm^3$ over the course of one year. $^3H$ and $^{22}Na$ are usually considered the most important radioisotopes at nuclear facilities. However, only a small amount of tritium was produced around this facility, as the energy of most neutrons is below the threshold of the predominant reactions for producing tritium: $^{16}O(n,\;X)^3H$ and $^{28}Si(n,X)^3H$ (approximately 20 MeV). The dose level of drinking water from $^{22}Na$ was $1.48{\times}10^{-5}$ pCi/ml/yr, which was less than the annual intake limit in the regulations.

REVIEW AND COMPILATION OF DATA ON RADIONUCLIDE MIGRATION AND RETARDATION FOR THE PERFORMANCE ASSESSMENT OF A HLW REPOSITORY IN KOREA

  • Baik, Min-Hoon;Lee, Seung-Yeop;Lee, Jae-Kwang;Kim, Seung-Soo;Park, Chung-Kyun;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • 제40권7호
    • /
    • pp.593-606
    • /
    • 2008
  • In this study, data on radionuclide migration and retardation processes in the engineered and natural barriers of High-Level Radioactive Waste (HLW) repository have been reviewed and compiled for use in the performance assessment of a HLW disposal system in Korea. The status of the database on radionuclide migration and retardation that is being developed in Korea is investigated and summarized in this study. The solubilities of major actinides such as D, Th, Am, Np, and Pu both in Korean bentonite porewater and in deep Korean groundwater are calculated by using the geochemical code PHREEQC (Ver. 2.0) based on the KAERI-TDB(Korea Atomic Energy Research Institute-Thermochemical Database), which is under development. Databases for the diffusion coefficients ($D^b_e$ values) and distribution coefficients ($K^b_d$ values) of some radionuclides in the compacted Korean Ca-bentonite are developed based upon domestic experimental results. Databases for the rock matrix diffusion coefficients ($D^r_e$ values) and distribution coefficients ($K^r_d$ values) of some radionuclides for Korean granite rock and deep groundwater are also developed based upon domestic experimental results. Finally, data related to colloids such as the characteristics of natural groundwater colloids and the pseudo-colloid formation constants ($K_{pc}$ values) are provided for the consideration of colloid effects in the performance assessment.

Radionuclide Transport Mediated by Pseudo-Colloid in the fractured Rock Media : Model Development

  • Baik, Min-Hoon;Hahn, Phil-Soo
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 춘계학술발표회논문집(2)
    • /
    • pp.769-774
    • /
    • 1995
  • In this study, a transport model was developed in order to analyze and predict the transport behaviors of radionuclides mediated by pseudo-colloid in the fractured rock media. It was resulted that the transport of Pu-239 was faster than Ni-63 because pseudo-colloid formation constant of Pu-239 was greater than that of Ni-63. Also, the effect of pseudo-colloid formation on the transport of a radionuclide was shown to be very significant when the apparent pseudo colloid formation constant, $K_{ap}(m^{3}/kg)$, was greater than 100. Thus, it can be concluded that acceleration of radionuclide migration may be occurred because the pseudo-colloid formation of radionuclides increases the amount of mobile components in the solution and consequently decreases the amount of radionuclides adsorbed on the stationary solid medium.

  • PDF

Transport Parameters of 99Tc, 137Cs, 90Sr, and 239+240Pu for Soils in Korea

  • Keum, D.K.;Kim, B.H.;Jun, I.;Lim, K.M.;Choi, Y.H.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • 제1권1호
    • /
    • pp.49-55
    • /
    • 2013
  • To characterize quantitatively the transport of $^{99}Tc$ and the global fallout ($^{137}Cs$, $^{90}Sr$, and $^{239+240}Pu$) for soils in Korea, the transport parameters of a convective-dispersion model, apparent migration velocity, and apparent dispersion coefficient were estimated from the vertical depth profiles of the radionuclides in soils. The vertical profiles of $^{99}Tc$ were measured from a pot experiment for paddy soil that had been sampled from a rice-field around the Gyeongju radioactive waste repository in Korea, and the vertical depth distributions of the global fallout $^{137}Cs$, $^{90}Sr$, and $^{239+240}Pu$ were measured from the soil samples that were taken from local areas in Korea. The front edge of the $^{99}Tc$ profiles reached a depth of about 12 cm in 138 days, indicating a faster movement than the fallout radionuclides. A weak adsorption of $^{99}Tc$ on the soil particles by the formation of Tc(VII) and a high water infiltration velocity seemed to have controlled the migration of $^{99}Tc$. The apparent migration velocity and dispersion coefficient of $^{99}Tc$ for the disturbed paddy soil were 2.88 cm/y and 6.3 $cm^2/y$, respectively. The majority of the global fallout $^{137}Cs$, $^{90}Sr$, and $^{239+240}Pu$ were found in the top 20 cm of the soils even after a transport of about 30 years. The transport parameters for the global fallout radionuclides were 0.01-0.1cm/y ($^{137}Cs$), 0.09-0.13cm/y ($^{90}Sr$), and 0.09-0.18cm/y ($^{239+240}Pu$) for the apparent migration velocity: 0.21-1.09 $cm^2/y$ ($^{137}Cs$), 0.12-0.7$cm^2/y$ ($^{90}Sr$), and 0.09-0.36$cm^2/y$ ($^{239+240}Pu$) for the apparent dispersion coefficient.

Simulation of the Migration of 3H and 14C Radionuclides on the 2nd Phase Facility at the Wolsong LILW Disposal Center

  • Ha, Jaechul;Son, Yuhwa;Cho, Chunhyung
    • 방사성폐기물학회지
    • /
    • 제18권4호
    • /
    • pp.439-455
    • /
    • 2020
  • Numerical model was developed that simulates radionuclide (3H and 14C) transport modeling at the 2nd phase facility at the Wolsong LILW Disposal Center. Four scenarios were simulated with different assumptions about the integrity of the components of the barrier system. For the design case, the multi-barrier system was shown to be effective in diverting infiltration water around the vaults containing radioactive waste. Nevertheless, the volatile radionuclide 14C migrates outside the containment system and through the unsaturated zone, driven by gas diffusion. 3H is largely contained within the vaults where it decays, with small amounts being flushed out in the liquid state. Various scenarios were examined in which the integrity of the cover barrier system or that of the concrete were compromised. In the absence of any engineered barriers, 3H is washed out to the water table within the first 20 years. The release of 14C by gas diffusion is suppressed if percolation fluxes through the facility are high after a cover failure. However, the high fluxes lead to advective transport of 14C dissolved in the liquid state. The concrete container is an effective barrier, with approximately the same effectiveness as the cover.