• Title/Summary/Keyword: Radionuclides immobilization

Search Result 6, Processing Time 0.019 seconds

Assessment of Radionuclides(Co, Sr) Adsorption and Desorption Characteristics in Soil Using Modified Clay and Fish Bones (개질 점토 및 생선뼈를 이용한 토양 내 방사성 핵종(Co, Sr) 흡착 및 탈착 특성 평가)

  • Kang Kyungchan
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.58-70
    • /
    • 2023
  • The improper management of radioactive waste or accidents caused by natural disasters can result in the release of radioactive materials into the surrounding environment, potentially leading to soil and groundwater contamination by radionuclides. In this study, adsorption-desorption behaviors of the radionuclides (cobalt and strontium) in natural soil, montmorillonite, Mn-PILC, Fe-PILC, and fishbone were investigated. Several models were used to predict adsorption isotherms of radionuclides on various absorbents. Adsorption isotherms of cobalt and strontium in several adsorbents were examined at pH 5.5. The amount of sorbed cobalt and strontium were represented fishbone > natural soil > Mn-PILC > Fe-PILC > montmorillonite and natural soil > Mn-PILC > fishbone > Fe-PILC > montmorillonite, respectively. Adsorption datas were fitted with several models such as Freundlich, Langmuir, Sips, Redlich-Peterson, Khan, and Generalized model. The results of curve fitting showed R2> 0.98 in all of adsorption models, except Sr2+ adsorption onto montmorillonite. For modified clays (Mn-PILC, Fe-PILC), it is suggested that, unlike natural soils and fish bones, there are not only single adsorption mechanisms but also adsorption mechanisms based on chemical adsorption and surface charge. In the case of fish bones, due to the relatively higher adsorption capacity than modified clays and its characteristic of significant desorption, it is expected more suitable for the removal of radionuclides in aquatic environments than for the immobilization of radionuclides in soil.

Determination of reaction kinetics during vitrification of radioactive liquid waste for different types of base glass

  • Suneel, G.;Rajasekaran, S.;Selvakumar, J.;Kaushik, Chetan P.;Gayen, J.K.;Ravi, K.V.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.746-754
    • /
    • 2019
  • Vitrification of radioactive liquid waste (RLW) provides a feasible solution for isolating radionuclides from the biosphere for an extended period. In vitrification, base glass and radioactive waste are added simultaneously into the melter. Determination of heat and mass transfer rates is necessary for rational design and sizing of melter. For obtaining an assured product quality, knowledge of reaction kinetics associated with the thermal decomposition of waste constituents is essential. In this study Thermogravimetry (TG) - Differential Thermogravimetry (DTG) of eight kinds of nitrates and two oxides, which are major components of RLW, is investigated in the temperature range of 298-1273 K in the presence of base glasses of five component (5C) and seven component (7C). Studies on thermal behavior of constituents in RLW were carried out at heating rates ranging from 10 to $40\;K\;min^{-1}$ using TG - DTG. Thermal behavior and related kinetic parameters of waste constituents, in the presence of 5C and 7C base glass compositions were also investigated. The activation energy, pre-exponential factor and order of the reaction for the thermal decomposition of 24% waste oxide loaded glasses were estimated using Kissinger method.

SrAl2Si2O8 ceramic matrices for 90Sr immobilization obtained via spark plasma sintering-reactive synthesis

  • Papynov, E.K.;Belov, A.A.;Shichalin, O.O.;Buravlev, I. Yu;Azon, S.A.;Golub, A.V.;Gerasimenko, A.V.;Parotkina, Yu. А.;Zavjalov, A.P.;Tananaev, I.G.;Sergienko, V.I.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2289-2294
    • /
    • 2021
  • In the present study, an original spark plasma sintering-reactive synthesis (SPS-RS) method for minerallike ceramic materials based on SrAl2Si2O8 feldspar-like skeleton structure was used for the first time, promising solid-state matrices for reliable immobilization of high-energy 90Sr. The method is based on the "in-situ" reaction of a mixture of SrO, Al2O3 and SiO2 oxides when heated by a unipolar pulsed current under compacting pressure. The phase and elemental composition structure were studied. The dynamics of the consolidation of the reaction mixture of oxides was studied in the range of 900-1200 ℃. The study found the temperature of the high-speed (minutes) SPS-RS formation of single-phase SrAl2Si2O8 composition ceramic in the absence of intermediate reaction products with a relative density of up to 99.2% and compressive strength up to 145 MPa and a strontium leaching rate of 10-4g/cm2·day.

A novel approach for rice straw agricultural waste utilization: Synthesis of solid aluminosilicate matrices for cesium immobilization

  • Panasenko, A.E.;Shichalin, O.O.;Yarusova, S.B.;Ivanets, A.I.;Belov, A.A.;Dran'kov, A.N.;Azon, S.A.;Fedorets, A.N.;Buravlev, I. Yu;Mayorov, V. Yu;Shlyk, D. Kh;Buravleva, A.A.;Merkulov, E.B.;Zarubina, N.V.;Papynov, E.K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3250-3259
    • /
    • 2022
  • A new approach to the use of rice straw as a difficult-to-recycle agricultural waste was proposed. Potassium aluminosilicate was obtained by spark plasma sintering as an effective material for subsequent immobilization of 137Cs into a solid-state matrix. The sorption properties of potassium aluminosilicate to 137Cs from aqueous solutions were studied. The effect of the synthesis temperature on the phase composition, microstructure, and rate of cesium leaching from samples obtained at 800-1000 ℃ and a pressure of 25 MPa was investigated. It was shown that the positive dynamics of compaction was characteristic of glass ceramics throughout the sintering. Glass ceramics RS-(K,Cs)AlSi3O8 obtained by the SPS method at 1000 ℃ for 5 min was characterized by a high density of ~2.62 g/cm3, Vickers hardness ~ 2.1 GPa, compressive strength ~231.3 MPa and the rate of cesium ions leaching of ~1.37 × 10-7 g cm-2·day-1. The proposed approach makes it possible to safe dispose of rice straw and reduce emissions into the atmosphere of microdisperse amorphous silica, which is formed during its combustion and causes respiratory diseases, including cancer. In addition, the obtained is perspective to solve the problem of recycling long-lived 137Cs radionuclides formed during the operation of nuclear power plants into solid-state matrices.

Solidification of high level waste using magnesium potassium phosphate compound

  • Vinokurov, Sergey E.;Kulikova, Svetlana A.;Myasoedov, Boris F.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.755-760
    • /
    • 2019
  • Compound samples based on the mineral-like magnesium potassium phosphate matrix $MgKPO_4{\times}6H_2O$ were synthesized by solidification of high level waste surrogate. Phase composition and structure of synthesized samples were studied by XRD and SEM methods. Compressive strength of the compounds is $12{\pm}3MPa$. Coefficient of thermal expansion of the samples in the range $250-550^{\circ}C$ is $(11.6{\pm}0.3){\times}10^{-6}1/^{\circ}C$, and coefficient of thermal conductivity in the range $20-500^{\circ}C$ is $0.5W/(m{\times}K)$. Differential leaching rate of elements from the compound, $g/(cm^2{\times}day)$: $Mg-6.7{\times}10^{-6}$, $K-3.0{\times}10^{-4}$, $P-1.2{\times}10^{-4}$, $^{137}Cs-4.6{\times}10^{-7}$; $^{90}Sr-9.6{\times}10^{-7}$; $^{239}Pu-3.7{\times}10^{-9}$, $^{241}Am-9.6{\times}10^{-10}$. Leaching mechanism of radionuclides from the samples at the first 1-2 weeks of the leaching test is determined by dissolution ($^{137}Cs$), wash off ($^{90}Sr$) or diffusion ($^{239}Pu$ and $^{241}Am$) from the compound surface, and when the tests continue to 90-91 days - by surface layer depletion of compound. Since the composition and physico-chemical properties of the compound after irradiation with an electron beam (absorbed dose of 1 MGy) are constant the radiation resistance of compound was established.

Probing into the optimum preparation and the chemical durability of Sr0.5Zr2(PO4)3-SmPO4 dual-phase ceramics for nuclear waste forms via in-situ synthesis

  • Kunqi Liu;Junxia Wang;Anhang Wu;Jin Wang;Die Liu;Xiaoling Ma
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2174-2181
    • /
    • 2024
  • In this work, Sr0.5Zr2(PO4)3-SmPO4 dual-phase ceramics were prepared via in-situ synthesis process, which is a potential novel nuclear waste form for immobilizing the fission product 90Sr and the trivalent actinide radionuclides in high-level waste (HLW). And the preparation technology, microstructure and chemical durability of Sr0.5Zr2(PO4)3-SmPO4 dual-phase ceramics were systematically investigated. It was confirmed that the optimum microwave-sintering temperature (1050 ℃) and heat preservation time (1.5 h) is estimated by Archimedes method. Besides, the as-prepared samples that were consisted of strontium zirconium phosphate (SrZP) and monazite showed the remarkable densification, in which the two crystalline phases were intermixed well with each other. Meanwhile, the formation and evolution of microstructure was also consistent with the variational rule of Sr0.5Zr2(PO4)3/SmPO4, indicating that there was not mutual reaction during the in-situ synthesis process. The PCT and MCC-1 experimental results demonstrated that the elemental normalized leaching rates of tested samples are all at a low level (LRSr ~10-4 g·m-2·d-1, LRZr ~10-8-10-6 g·m-2·d-1, LRSm ~10-7-10-5 g·m-2·d-1 and LRP ~10-4 g·m-2·d-1). It is indicated that Sr0.5Zr2(PO4)3-SmPO4 dual-phase ceramics possesses excellent chemical durability for HLW disposal.