• Title/Summary/Keyword: Radionuclide transport simulation

Search Result 10, Processing Time 0.026 seconds

Method for Evaluating Radionuclide Transport in Biosphere by Calculating Elapsed Transport Time (이동 경과 시간 계산을 이용한 생물권에서의 방사성 핵종 이동 평가 방법)

  • Ko, Nak-Youl;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.305-315
    • /
    • 2020
  • For geological disposal of radioactive wastes, a method was proposed to evaluate the radionuclide transport in the biosphere by calculating the elapsed time of nuclide migration. The radionuclides were supposed to be introduced from a natural barrier and reached a large surface water body following a groundwater flow in a shallow subsurface. The biosphere was defined as a shallow subsurface environment that included aquifers on a host rock. Using the proposed method, a calculation algorithm was established, and a computer code that implemented the algorithm was developed. The developed code was verified by comparing the simulation results of the simple cases with the results of the analytical solution and a public program, which has been widely used to evaluate the radiation dose using the radionuclide transport near the surface. A case study was constructed using the previous research for radionuclide transport from the hypothetical geological disposal repository. In the case study, the code calculated the mass discharge rate of radionuclide to a stream in the biosphere. Because the previous research only demonstrated the transport of radionuclides from the hypothetical repository to the host rock, the developed code in the present study could help identify the total transport of radionuclide along the complete pathway.

Development of the Numerical Model for Complex Transport of Radionuclide and Colloid in the Single Fractured Rock (단일 균열암반에서 핵종/콜로이드 복합이동에 대한 수치모델 개발)

  • Lee, Sanghwa;Kim, Jung-Woo;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.237-246
    • /
    • 2012
  • In this study, numerical model for transport of radionuclide and colloid was developed. In order to solve reaction-migration governing equation for colloid and radionuclide, Strang-splitting Sequential Non-Iterative (SNI), which is one of Operator Splitting Method, was used for numerical method and this was coded by MATLAB. From the verification by comparing the simulation results with analytical solution considering only solute transport and rock diffusion, the Pearson's correlation coefficient was greater than 0.99 which demonstrates the accuracy of the model.

Radionuclides Transport from the Hypothetical Disposal Facility in the KURT Field Condition on the Time Domain (KURT 부지 환경에 위치한 가상의 처분 시설에서 누출되는 방사성 핵종의 이동을 Time Domain에서 해석하는 방법에 관한 연구)

  • Hwang, Youngtaek;Ko, Nak-Youl;Choi, Jong Won;Jo, Seong-Seock
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2012
  • Based on the data observed and analyzed on a groundwater flow system in the KURT (KAERI Underground Research Tunnel) site, the transport of radionuclides, which were assumed to be released at the supposed position, was calculated on the time-domain. A groundwater pathway from the release position to the surface was identified by simulating the groundwater flow model with the hydrogeological characteristics measured from the field tests in the KURT site. The elapsed time when the radionuclides moved through the pathway is evaluated using TDRW (Time Domain Random Walk) method for simulating the transport on the time-domain. Some retention mechanisms, such as radioactive decay, equilibrium sorption, and matrix diffusion, as well as the advection-dispersion were selected as the factors to influence on the elapsed time. From the simulation results, the effects of the sorption and matrix diffusion, determined by the properties of the radionuclides and underground media, on the transport of the radionuclides were analyzed and a decay chain of the radionuclides was also examined. The radionuclide ratio of the mass discharge into the surface environment to the mass released from the supposed repository did not exceed $10^{-3}$, and it decreased when the matrix diffusion were considered. The method used in this study could be used in preparing the data on radionuclide transport for a safety assessment of a geological disposal facility because the method could evaluate the travel time of the radionuclides considering the transport retention mechanism.

Evaluation of Internal Dosimetry according to Various Radionuclides Conditions in Nuclear Medicine Myocardial Scan: Monte Carlo Simulation (심근 핵의학 검사에서 다양한 방사성핵종 조건에 따른 내부피폭선량 평가: 몬테카를로 시뮬레이션)

  • Min-Gwan Lee;Chanrok Park
    • Journal of radiological science and technology
    • /
    • v.47 no.3
    • /
    • pp.213-218
    • /
    • 2024
  • The myocardial nuclear medicine examination is widely performed to diagnose myocardium disease using various radionuclides. Although image quality according to radionuclides has improved, the radiation exposure for target organ as well as peripheral organs should be considered. Here, the aim of this study was to evaluate absorbed dose (Gy) for peripheral organs in myocardial nuclear medicine scan from myocardium according to various scan environments based on Monte Carlo simulation. The simulation environment was modeled 5 cases, which were considered by radionuclides, number of injections, and radiodosage. In addition, the each radionuclide simulation such as distribution fraction was considered by recommended standard protocol, and the mesh computational female phantom, which is provided by International Commission on Radiological Protection (ICRP) 145, was used using the particle and heavy ion transport code system (PHITS) version 3.33. Based on the results, the closer to the myocardium, the higher the absorbed dose values. In addition, application for dual injection for radionuclides leaded to high absorbed dose compared with single injection for radionuclide. Consequently, there is difference for absorbed dose according to radionuclides, number of injections, and radiodosage. To detect the accurate diseased area, acquisition for improved image quality is crucial process by injecting radionuclides, however, we need to consider absorbed dose both target and peripheral inner organs from radionuclides in terms radiation protection for patient.

Improvement on Coupling Technique Between COMSOL and PHREEQC for the Reactive Transport Simulation

  • Dong Hyuk Lee;Hong Jang;Hyun Ho Cho;Jeonghwan Hwang;Jung-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.175-182
    • /
    • 2023
  • APro, a modularized process-based total system performance assessment framework, was developed at the Korea Atomic Energy Research Institute (KAERI) to simulate radionuclide transport considering coupled thermal-hydraulic-mechanical-chemical processes occurring in a geological disposal system. For reactive transport simulation considering geochemical reactions, COMSOL and PHREEQC are coupled with MATLAB in APro using an operator splitting scheme. Conventionally, coupling is performed within a MATLAB interface so that COMSOL stops the calculation to deliver the solution to PHREEQC and restarts to continue the simulation after receiving the solution from PHREEQC at every time step. This is inefficient when the solution is frequently interchanged because restarting the simulation in COMSOL requires an unnecessary setup process. To overcome this issue, a coupling scheme that calls PHREEQC inside COMSOL was developed. In this technique, PHREEQC is called through the "MATLAB function" feature, and PHREEQC results are updated using the COMSOL "Pointwise Constraint" feature. For the one-dimensional advection-reaction-dispersion problem, the proposed coupling technique was verified by comparison with the conventional coupling technique, and it improved the computation time for all test cases. Specifically, the more frequent the link between COMSOL and PHREEQC, the more pronounced was the performance improvement using the proposed technique.

Simulation of the Migration of 3H and 14C Radionuclides on the 2nd Phase Facility at the Wolsong LILW Disposal Center

  • Ha, Jaechul;Son, Yuhwa;Cho, Chunhyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.439-455
    • /
    • 2020
  • Numerical model was developed that simulates radionuclide (3H and 14C) transport modeling at the 2nd phase facility at the Wolsong LILW Disposal Center. Four scenarios were simulated with different assumptions about the integrity of the components of the barrier system. For the design case, the multi-barrier system was shown to be effective in diverting infiltration water around the vaults containing radioactive waste. Nevertheless, the volatile radionuclide 14C migrates outside the containment system and through the unsaturated zone, driven by gas diffusion. 3H is largely contained within the vaults where it decays, with small amounts being flushed out in the liquid state. Various scenarios were examined in which the integrity of the cover barrier system or that of the concrete were compromised. In the absence of any engineered barriers, 3H is washed out to the water table within the first 20 years. The release of 14C by gas diffusion is suppressed if percolation fluxes through the facility are high after a cover failure. However, the high fluxes lead to advective transport of 14C dissolved in the liquid state. The concrete container is an effective barrier, with approximately the same effectiveness as the cover.

Nanoporous graphene oxide membrane and its application in molecular sieving

  • Fatemi, S. Mahmood;Arabieh, Masoud;Sepehrian, Hamid
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.183-191
    • /
    • 2015
  • Gas transport through graphene-derived membranes has gained much interest recently due to its promising potential in filtration and separation applications. In this work, we explore Kr-85 gas radionuclide sequestration from natural air in nanoporous graphene oxide membranes in which different sizes and geometries of pores were modeled on the graphene oxide sheet. This was done using atomistic simulations considering mean-squared displacement, diffusion coefficient, number of crossed species of gases through nanoporous graphene oxide, and flow through interlayer galleries. The results showed that the gas features have the densest adsorbed zone in nanoporous graphene oxide, compared with a graphene membrane, and that graphene oxide was more favorable than graphene for Kr separation. The aim of this paper is to show that for the well-defined pore size called P-7, it is possible to separate Kr-85 from a gas mixture containing Kr-85, O2 and N2. The results would benefit the oil industry among others.

Validation of the correlation-based aerosol model in the ISFRA sodium-cooled fast reactor safety analysis code

  • Yoon, Churl;Kim, Sung Il;Lee, Sung Jin;Kang, Seok Hun;Paik, Chan Y.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3966-3978
    • /
    • 2021
  • ISFRA (Integrated SFR Analysis Program for PSA) computer program has been developed for simulating the response of the PGSFR pool design with metal fuel during a severe accident. This paper describes validation of the ISFRA aerosol model against the Aerosol Behavior Code Validation and Evaluation (ABCOVE) experiments undertaken in 1980s for radionuclide transport within a SFR containment. ABCOVE AB5, AB6, and AB7 tests are simulated using the ISFRA aerosol model and the results are compared against the measured data as well as with the simulation results of the MELCOR severe accident code. It is revealed that the ISFRA prediction of single-component aerosols inside a vessel (AB5) is in good agreement with the experimental data as well as with the results of the aerosol model in MELCOR. Moreover, the ISFRA aerosol model can predict the "washout" phenomenon due to the interaction between two aerosol species (AB6) and two-component aerosols without strong mutual interference (AB7). Based on the theory review of the aerosol correlation technique, it is concluded that the ISFRA aerosol model can provide fast, stable calculations with reasonable accuracy for most of the cases unless the aerosol size distribution is strongly deformed from log-normal distribution.

Travel Times of Radionuclides Released from Hypothetical Multiple Source Positions in the KURT Site (KURT 환경 자료를 이용한 가상의 다중 발생원에서의 누출 핵종의 이동 시간 평가)

  • Ko, Nak-Youl;Jeong, Jongtae;Kim, Kyung Su;Hwang, Youngtaek
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.281-291
    • /
    • 2013
  • A hypothetical repository was assumed to be located at the KURT (KAERI Underground Research Tunnel) site, and the travel times of radionuclides released from three source positions were calculated. The groundwater flow around the KURT site was simulated and the groundwater pathways from the hypothetical source positions to the shallow groundwater were identified. Of the pathways, three pathways were selected because they had highly water-conductive features. The transport travel times of the radionuclides were calculated by a TDRW (Time-Domain Random Walk) method. Diffusion and sorption mechanisms in a host rock matrix as well as advection-dispersion mechanisms under the KURT field condition were considered. To reflect the radioactive decay, four decay chains with the radionuclides included in the high-level radioactive wastes were selected. From the simulation results, the half-life and distribution coefficient in the rock matrix, as well as multiple pathways, had an influence on the mass flux of the radionuclides. For enhancing the reliability of safety assessment, this reveals that identifying the history of the radionuclides contained in the high-level wastes and investigating the sorption processes between the radionuclides and the rock matrix in the field condition are preferentially necessary.

Evaluation of Radiological Effects on the Aptamers to Remove Ionic Radionuclides in the Liquid Radioactive Waste

  • Minhye Lee;Gilyong Cha;Dongki Kim;Miyong Yun;Daehyuk Jang;Sunyoung Lee;Song Hyun Kim;Hyuncheol Kim;Soonyoung Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.44-51
    • /
    • 2023
  • Background: Aptamers are currently being used in various fields including medical treatments due to their characteristics of selectively binding to specific molecules. Due to their special characteristics, the aptamers are expected to be used to remove radionuclides from a large amount of liquid radioactive waste generated during the decommissioning of nuclear power plants. The radiological effects on the aptamers should be evaluated to ensure their integrity for the application of a radionuclide removal technique. Materials and Methods: In this study, Monte Carlo N-Particle transport code version 6 (MCNP6) and Monte Carlo damage simulation (MCDS) codes were employed to evaluate the radiological effects on the aptamers. MCNP6 was used to evaluate the secondary electron spectrum and the absorbed dose in a medium. MCDS was used to calculate the DNA damage by using the secondary electron spectrum and the absorbed dose. Binding experiments were conducted to indirectly verify the results derived by MCNP6 and MCDS calculations. Results and Discussion: Damage yields of about 5.00×10-4 were calculated for 100 bp aptamer due to the radiation dose of 1 Gy. In experiments with radioactive materials, the results that the removal rate of the radioactive 60Co by the aptamer is the same with the non-radioactive 59Co prove the accuracy of the previous DNA damage calculation. Conclusion: The evaluation results suggest that only very small fraction of significant number of the aptamers will be damaged by the radioactive materials in the liquid radioactive waste.