• Title/Summary/Keyword: Radionuclide Transport

Search Result 54, Processing Time 0.022 seconds

Evaluation of Radiological Effects on the Aptamers to Remove Ionic Radionuclides in the Liquid Radioactive Waste

  • Minhye Lee;Gilyong Cha;Dongki Kim;Miyong Yun;Daehyuk Jang;Sunyoung Lee;Song Hyun Kim;Hyuncheol Kim;Soonyoung Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.44-51
    • /
    • 2023
  • Background: Aptamers are currently being used in various fields including medical treatments due to their characteristics of selectively binding to specific molecules. Due to their special characteristics, the aptamers are expected to be used to remove radionuclides from a large amount of liquid radioactive waste generated during the decommissioning of nuclear power plants. The radiological effects on the aptamers should be evaluated to ensure their integrity for the application of a radionuclide removal technique. Materials and Methods: In this study, Monte Carlo N-Particle transport code version 6 (MCNP6) and Monte Carlo damage simulation (MCDS) codes were employed to evaluate the radiological effects on the aptamers. MCNP6 was used to evaluate the secondary electron spectrum and the absorbed dose in a medium. MCDS was used to calculate the DNA damage by using the secondary electron spectrum and the absorbed dose. Binding experiments were conducted to indirectly verify the results derived by MCNP6 and MCDS calculations. Results and Discussion: Damage yields of about 5.00×10-4 were calculated for 100 bp aptamer due to the radiation dose of 1 Gy. In experiments with radioactive materials, the results that the removal rate of the radioactive 60Co by the aptamer is the same with the non-radioactive 59Co prove the accuracy of the previous DNA damage calculation. Conclusion: The evaluation results suggest that only very small fraction of significant number of the aptamers will be damaged by the radioactive materials in the liquid radioactive waste.

Introduction of Two-region Model for Simulating Long-Term Erosion of Bentonite Buffer (벤토나이트 완충재 장기 침식을 모사하기 위한 Two-region 모델 소개)

  • Jaewon Lee;Jung-Woo Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.228-243
    • /
    • 2023
  • Bentonite is widely recognized and utilized as a buffer material in high-level radioactive waste repositories, mainly due to its favorable characteristics such as swelling capability and low permeability. Bentonite buffers play an important role in ensuring the safe disposal of radioactive waste by providing a low permeability barrier and effectively preventing the migration of radionuclides into the surrounding rock. However, the long-term performance of bentonite buffers still remains a subject of ongoing research, and one of the main concerns is the erosion of the buffer induced by swelling and groundwater flow. The erosion of the bentonite buffer can significantly impact repository safety by compromising the integrity of buffer and leading to the formation of colloids that may facilitate the transport of radionuclides through groundwater, consequently elevating the risk of radionuclide migration. Therefore, it is very important to numerically quantify the erosion of bentonite buffer to evaluate the long-term performance of bentonite buffer, which is crucial for the safety assessment of high-level radioactive waste disposal. In this technical note, Two-region model is introduced, a proposed model to simulate the erosion behavior of bentonite based on a dynamic bentonite diffusion model, and quantitative evaluation is conducted for the bentonite buffer erosion with this model.

Review of Thermodynamic Sorption Model for Radionuclides on Bentonite Clay (벤토나이트와 방사성 핵종의 열역학적 수착 모델 연구)

  • Jeonghwan Hwang;Jung-Woo Kim;Weon Shik Han;Won Woo Yoon;Jiyong Lee;Seonggyu Choi
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.515-532
    • /
    • 2023
  • Bentonite, predominantly consists of expandable clay minerals, is considered to be the suitable buffering material in high-level radioactive waste disposal repository due to its large swelling property and low permeability. Additionally, the bentonite has large cation exchange capacity and specific surface area, and thus, it effectively retards the transport of leaked radionuclides to surrounding environments. This study aims to review the thermodynamic sorption models for four radionuclides (U, Am, Se, and Eu) and eight bentonites. Then, the thermodynamic sorption models and optimized sorption parameters were precisely analyzed by considering the experimental conditions in previous study. Here, the optimized sorption parameters showed that thermodynamic sorption models were related to experimental conditions such as types and concentrations of radionuclides, ionic strength, major competing cation, temperature, solid-to-liquid ratio, carbonate species, and mineralogical properties of bentonite. These results implied that the thermodynamic sorption models suggested by the optimization at specific experimental conditions had large uncertainty for application to various environmental conditions.

A Basic Study on the Radiological Characteristics and Disposal Methods of NORM Wastes (공정부산물의 방사선적 특성과 처분방안에 관한 기본 연구)

  • Jeong, Jongtae;Baik, Min-Hoon;Park, Chung-Kyun;Park, Tae-Jin;Ko, Nak-Youl;Yoon, Ki Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.217-233
    • /
    • 2014
  • Securing the radiological safety is a prerequisite for the safe management of the naturally occurring radioactive materials (NORM) which cannot be reused. This becomes a crucial focus of our R&D efforts upon the implementation of the Act on Protective Action Guidelines against Radiation in the Natural Environment. To secure the safety, the establishment of technical bases and procedures for securing radiological safety related to the disposal of NORM is required. Thus, it is necessary to analyze the characteristics, to collect the data, to have the radiological safety assessment methodologies and tools, to investigate disposal methods and facilities, and to study the effects of the input data on the safety for the NORM wastes. Here, we assess the environmental impact of the NORM waste disposal with respect to the major domestic and foreign NORM characteristics. The data associated with major industries are collected/analyzed and the status of disposal facilities and methodologies relevant to the NORM wastes is investigated. We also suggest the conceptual design concept of a landfill disposal facility and the management plan with respect to the major NORM wastes characteristics. The radionuclide pathways are identified for the atmospheric transport and leachate release and the environmental impact assessment methodology for the NORM waste disposal is established using a relevant code. The assessment and analysis on the exposure doses and excessive cancer risks for the NORM waste disposal are performed using the characteristics of the representative domestic NORM wastes including flying ash, phosphor gypsum, and redmud. The results show that the exposure dose and the excessive cancer risks are very low to consider any radiation effects. This study will contribute to development in the areas of the regulatory technology for securing radiological safety relevant to NORM waste disposal and to the implementation technology for the Act.