• Title/Summary/Keyword: Radioluminescence

Search Result 3, Processing Time 0.02 seconds

An Integrated System for Radioluminescence, Thermoluminescence and Optically Stimulated Luminescence Measurements

  • Park, Chang-Young;Park, Young-Kook;Chung, Ki-Soo;Lee, Jong-Duk;Lee, Jungil;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.160-169
    • /
    • 2018
  • Background: This study aims to develop an integrated optical system that can simultaneously or selectively measure the signals obtained from radioluminescence (RL), thermoluminescence (TL), and optically stimulated luminescence (OSL), which are luminescence phenomena of materials stimulated by radioactivity, heat, and light, respectively. The luminescence mechanism of various materials could be investigated using the glow curves of the luminescence materials. Materials and Methods: RL/TL/OSL integrated measuring system was equipped with a X-ray tube (50 kV, $200{\mu}A$) as an ionizing radiation source to irradiate the sample. The sample substrate was used as a heating source and was also designed to optically stimulate the sample material using various light sources, such as high luminous blue light emitting diode (LED) or laser. The system measured the luminescence intensity versus the amount of irradiation/stimulation on the sample for the purpose of measuring RL, TL and OSL sequentially or by selectively combining them. Optical filters were combined to minimize the interference of the stimulation light in the OSL signal. A long-pass filter (420 nm) was used for 470 nm LED, an ultraviolet-pass filter (260-390 nm) was used for detecting the luminescence of the sample by PM tube. Results and Discussion: The reliability of the system was evaluated using the RL/OSL characteristics of $Al_2O_3:C$ and the RL/TL characteristics of LiF:Mg,Cu,Si, which were used as dosimetry materials. The RL/OSL characteristics of $Al_2O_3:C$ showed relatively linear dose-response characteristics. The glow curve of LiF:Mg,Cu,Si also showed typical RL/OSL characteristics. Conclusion: The reliability of the proposed system was verified by sequentially measuring the RL characteristics of radiation as well as the TL and OSL characteristics by concurrent thermal and optical stimulations. In this study, we developed an integrated measurement system that measures the glow curves of RL/TL/OSL using universal USB-DAQs and the control program.

Some aspects of scintillation mechanism in organic molecular dielectrics

  • Galunov, N.Z.;Grinev, B.V.;Tarasenko, O.A.;Martynenko, E.V.
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.2
    • /
    • pp.85-89
    • /
    • 2005
  • Aspects of the scintillation mechanism in organic systems obtained on the base of precise measurements of the radioluminescence pulse shape are discussed. It shown that the process of scintillation light pulse formation is mainly determined by initial conditions of exited states generation.

A Study of the Inorganic Scintillator Properties for a Phoswich Detector (Phoswich 검출기 제작을 위한 무기 섬광체 특성 연구)

  • Lee, Woo-Gyo;Kim, Yong-Kyun;Kim, Jong-Kyung;Tarasov, V.;Zelenskaya, O.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.251-256
    • /
    • 2004
  • CsI(Tl), $CdWO_4(CWO),\;Bi_4Ge_3O_{12}(BGO)\;and\;Gd_2SiO_5:Ce(GSO)$ scintillators were studied to manufacture a phoswich detector. The maximum wavelengths of the CsI(Tl), CWO, BGO and GSO scintillators are 550 nm, 475 nm, 490 nm and 440 nm for the radioluminescence, and the absolute light outputs of the CsI(Tl), CWO, BGO and GSO scintillators are 54890 phonon/MeV, 17762 phonon/MeV, 8322 phonon/MeV and 8932 phonon/MeV with a neutral filter, and the decay time of the CsI(Tl), CWO, BGO and GSO scintillators is $1.3{\mu}s,\;8.17{\mu}s$, 213 ns and 37 ns by a single photon method. The phoswich detector which was manufactured with plastic and CsI(Tl) scintillators could separate the ${\beta}$ particle and ${\gamma}$ ray. The phoswich detector could also measure the pulse height spectra of the ${\beta}$ particle and ${\gamma}$ ray by a PSD method.