• Title/Summary/Keyword: Radiology science department

Search Result 2,933, Processing Time 0.026 seconds

Neutron Capture Resonance Energy Identification of Indium by Time-of-Flight Method (중성자 비행시간법을 이용한 인듐의 공명에너지 동정에 관한 연구)

  • Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.403-408
    • /
    • 2012
  • Prompt gamma ray from the natural Indium sample was measured by using an assembly of BGO($Bi_4Ge_3O_{12}$) scintillation detectors in the neutron energy region from 1 to 300 eV. The assembly was composed of pieces of BGO. The spectrometer was composed geometrically as total energy absorption detector. 46-MeV electron linear accelerator which is located at Research Reactor Institute, Kyoto University used for neutron sources from photonuclear reaction. The measurement of the neutron capture resonances was performed to below neutron energy 1 keV, because of strong X-ray effect from photonuclear reaction in Ta target and short distance from the target to an assembly of detector. The distance of neutron flight path is $12.7{\pm}0.02m$. The large neutron capture resonances were measured from 1 to 400 eV. The energy in the capture resonance was compared with the evaluated values. The large resonances were seen in the present measurement. General agreement can be seen between the present measurement and the previous evaluated data in relevant energy region. In the present study, we measured the continues resonance structure above 1 keV neutron energy region. 91.49 eV new neutron capture resonance was found in present measurement.

A Study of the Characteristics of the Human External Auditory Canal Using 3-Dimensional Medical Imaging (3차원 의료영상을 이용한 인체 외이도 특징에 관한 연구)

  • Kim, Hyeong-Gyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.467-473
    • /
    • 2017
  • Using Digital Imaging and Communications in Medicine(DICOM) and a 3D medical imaging program, the characteristics of the external auditory canal(EAC) were compared. Using images of the ears of 63 different male and female subjects of varying age, this study measured and compared EAC transverse axis lengths, internal diameter circumferences, and upper and lower curvature angles. The findings of the study indicated differences in EAC shapes according not only to age and sex but also to the left and right of the same subject. A comparison between the sexes of the subjects (35 males and 28 females) indicated that, on average, the length of the EAC was 4.75mm longer in males. Based on the lower curvature angle, the interior side of the diameter circumference of the EAC was found to be reduced on average by 37.2% compared to the exterior side. Although the upper curvature angle was on average $25.7^{\circ}$ larger than the lower curvature angle, 4 subjects showed a larger lower curvature angle and large differences between the upper and lower curvature angles were observed in 8 subjects of the younger age group (4~14 years old). This indicated changes in EAC curvature shapes during growth. This study presents a method to raise safety and precision by comparing direct measurements taken through physical means and indirect measurements acquired from existing ear samples. This was possible due to technological developments in which 3D medical image representation technology creates images close to reality, and, through further development, this method is expected to be used for standardization research of EAC shapes.

Image Quality Improvement in Computed Tomography by Using Anisotropic 2-Dimensional Diffusion Based Filter (비등방성 2차원 확산 기반 필터를 이용한 전산화단층영상 품질 개선)

  • Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • The purpose of this study was tried to remove the noise and improve the spatial resolution in the computed tomography (CT) by using anisotropic 2-dimensional (2D) diffusion based filter. We used 4-channel multi-detector CT and american association of physicists in medicine (AAPM) phantom was used for CT performance evaluation to evaluate the image quality. X-ray irradiation conditions for image acquisition was fixed at 120 kVp, 100 mAs and scanned 10 mm axis with ultra-high resolution. The improvement of anisotropic 2D diffusion filtering that we suggested firstly, increase the contrast of the image by using histogram stretching to the original image for 0.4%, and multiplying the individual pixels by 1.2 weight value, and applying the anisotropic diffusion filtering. As a result, we could distinguished five holes until 0.75 mm in the original image but, five holes until 0.40 mm in the image with improved anisotropic diffusion filter. The noise of the original image was 46.0, the noise of the image with improved anisotropic 2D diffusion filter was decreased to 33.5(27.2%). In conclusion improved anisotropic 2D diffusion filter that we proposed could remove the noise of the CT image and improve the spatial resolution.

A Study of Whiter Matter Fiber Tractography in Young Internet Addiction Disorder using a Brain Diffusion Tensor Magnetic Resonance Imaging (뇌 확산텐서 자기공명영상을 이용한 청소년 인터넷 중독자의 백질 섬유로에 관한 연구)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • The goal of this study is to investigate corpus callosum and both internal capsule changes with the internet addiction disorder compared to control group using MR diffusion tensor imaging. A total of 22 teenager volunteers who had 10 high-risk group with internet addiction and 12 normal control group were conducted for this study. Imaging was conducted on a 3 T using a EPI sequence. Image evaluation was analysed of the FA, ADC($10^{-3}mm^2/s$), length(mm). We did select ROI for image tracking on corpus callosum of 5 and including 2(internal capsule). The data from these ROIs were compared statistically among the groups using independent t-test, correlation coefficient. There were significant inter-group differences(p<0.05) among FA, ADC($10^{-3}mm^2/s$) and length(mm). And also significantly negative correlations were fond between FA values of corpus callosum and IAD scale(p=0.000). DTI was shown significant changes of FA and ADC, LNF values in IAD compared to control group. Therefore, our results may provided clinical information for brain wite matter functions.

Comparison of Image Quality in Magnetic Resonance Imaging of the Abdominal Organ at 1.5T and 3.0T before the Gadolinium Injection (조영제 주입 전 1.5T 와 3.0T를 이용한 복부장기 자기공명영상에서 영상의 질 비교)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.619-625
    • /
    • 2017
  • The sudy was intended to evaluate the optimal equipment selection by quantitatively assessing the SNR(signal to noise ratio) and CNR(contrast to noise ratio) on the abdominal organ. This study performed on 1.5 T and 3.0 T MRI units focusing on HASTE, HASTE(f/s) and FFE(in of phase), FFE(out of phase) without using the contrast medium(Gadolinium). The data analysis was performed by randomly selecting on 1.5 T and 3.0 T abdominal MRI images. As a results, SNR and CNR values of 3.0 T is higher than 1.5 T at liver, kidney and spleen(p<0.05). Stomach, abdominal fat and pancreas was obtained a higher value at 1.5 T(p<0.05). On conclusion, the organs of outer part in the body showed generally a high value at 3.0 T, and the organs of inner part in the body including the gas showed a high value at 3.0 T because of a large difference on magnetic susceptibility.

Design of a Radiation Spectroscopy Detector using a Spherical Scintillator and Development of a Radiation Source Position Tracking System (구형의 섬광체를 이용한 방사선 스펙트로스코피 검출기 설계 및 방사선원 위치 추적 시스템 개발)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.725-731
    • /
    • 2020
  • A radiation spectroscopy detector using a spherical scintillator was designed, and a system was developed to track the position of a radiation source using several detectors. The position tracking algorithm was designed based on the theory that the number of radiations decreases according to the inverse square law of distance, and the position of the radiation source was calculated by measuring the number of radiations generated from the radiation sources at various positions. The radiation generated from the radiation source is detected by different coefficients in each detector, and the difference between these detected coefficients varies in proportion to the inverse square of the distance. Geant4 Application for Tomographic Emission (GATE) simulation was performed to verify and evaluate the performance of the designed radiation source position tracking system, and radiation generated from radiation sources placed at different positions was counted with each detector. The number of measured radiations was tracked through the radiation source position tracking algorithm, and the error between the actual radiation source position and the position calculated by the algorithm was evaluated. The error between the position of the actual radiation source and the calculated position was measured as an average of 0.11% on the X-axis and 0.37% on the Y-axis, and it was verified that the position can be measured very accurately.

A Study on the Validation of Effective Angle of Particle Deposition according to the Detection Efficiency of High-purity Germanium Gamma-ray Detector (고순도 저마늄 감마선 검출기의 검출효율에 따른 유효입체각 검증에 관한 연구)

  • Chang, Boseok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.487-494
    • /
    • 2020
  • The distance between the source and the detector, the diameter of the detector, and the volume effect of the radiation source result in a change in solid angle at the detector entrance, which affects the determination of detection efficiency by causing a difference in path length within the detector. A typical analysis method for calculating solid angles was useful only for a source (60Co) with a simple geometric structure, so in this experiment, the distance between the detector and the source was measured by switching on for up to 25 cm with the reference point of window cap 0.5 cm. In addition, 450 and 1000 ㎖ Marinelli beaker of standard volumetric sources were closely adhered to the detector. For circular point sources co-axial with the detector, the change in the solid angle to the distance from the detector window is equal to half the square radius of the source versus the square radius of the detector, if the resulting relationship of the calculation analysis results in the detector being less than the radius of the source. Since the solid angular difference is 0.5 the result of Monte Carlo is acceptable. The relationship between detector and source distance is shown. Solid angles have been verified to decrease rapidly with distance. Measurement and simulation results for a volumetric source show a difference of ±1.01% from a distance of 0 cm and less than 4 % when the distance is reduced to 5 and 10 cm. It can be seen that the longer distance, the smaller efficiency angle, and the exponential increase in attenuation as the energy decreases, is reflected in the calculation of efficiency. Thus, the detection efficiency has proved sufficient for the use of solid angle and Monte Carlo codes.

The Study of Scattering Dust and Radiation Dose in Pedestrian Tunnels in Metropolitan Area (수도권 보행터널 내부에 존재하는 비산 먼지와 방사선량의 연구)

  • Jung, Hongmoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.385-390
    • /
    • 2020
  • In the present, external environmental factors affect human health. In particular, the most important issue is fine dust in these days. Because fine dust is inhaled through the human respiratory system is known to be harmful to health. Tunnels for cars and people can also be easily seen around us. This study, the amount of scattering radiation was measured for walkable tunnels about dust. For the measurement method, dust and radiation dose in the tunnel were measured on good weather (fine dust level: 0 ~ 30 ㎍/㎥) and normal day (fine dust level: 0 ~ 80 ㎍/㎥). The measurement resulted in an increase of 10~20 % of dust in the center of the tunnel on a good weather day and an increase of 20~30 % of dust in the center of the tunnel on normal weather. On the other hand, the results of tunnel measurement of radiation dose increased by 10~20 % at the center of the tunnel non-depending on the weather. As a result, pedestrians should pay attention to scattering dust and scattered radiation while moving through the tunnel. Therefore, it is recommended to wear a filter mask of PM2.5 or less during frequent tunnel walking.

Assessment of Magnetic Resonance Image Quality For Ferromagnetic Artifact Generation: Comparison with 1.5T and 3.0T. (강자성 인공물 발생에 대한 자기공명영상 질 평가: 1.5T와 3.0T 비교)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.193-199
    • /
    • 2018
  • In this research, 15 patients were diagnosed with 1.5T and 3.0T MRI instruments (Philips, Medical System, Achieva) to minize Ferromagnetic artifact and find the optimized Tesla. Based on the theory that the 3.0T, when compared to 1.5T, show relatively high signal-to-ratio(SNR), Scan time can be shortened or adjust the image resolution. However, when using the 3.0T MRI instruments, various artifact due to the magnetic field difference can degrade the diagnostic information. For the analysis condition, area of interest is set at the background of the T1, T2 sagittal image followed by evaluation of L3, L4, L5 SNR, length of 3 parts with Ferromagnetic artifact, and Histogram. The validity evaluation was performed by using the independent t test. As a result, for the SNR evaluation, mere difference in value was observed for L3 between 1.5T and 3.0T, while big differences were observed for both L4, and L5(p<0.05). Shorter length was observed for the 1.5T when observing 3 parts with Ferromagnetic artifact, thus we can conclude that 3.0T can provide more information on about peripheral tissue diagnostic information(p<0.05). Finally, 1.5T showed higher counts values for the Histogram evaluation(p<0.05). As a result, when we have compared the 1.5T and 3.0T with SNR, length of Ferromagnetic artifact, Histogram, we believe that using a Low Tesla for Spine MRI test can achieve the optimal image information for patients with disk operation like PLIF, etc. in the past.

Status of Nuclear Power Plant Decommissioning Cost Analysis in USA (미국의 원전해체 비용평가 기초자료 및 동향 분석)

  • Shin, Sanghwa;Kim, Soonyoung
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.139-148
    • /
    • 2018
  • Assessment of NPP(Nuclear Power Plant) decommissioning cost is very important for safe decommissioning of nuclear power plants. In the United States, which has the most NPP decommissioning experience, the cost evaluation study has been conducted since the 1970s in order to decommissioning nuclear facilities. The US NRC has conducted studies on decommissioning technology, safety and cost for a variety of reactor type and nuclear installations. In the total decommissioning costs, the end of operation licenses accounted for the largest portion, followed by spent fuel management and site restoration. In case of immediate decommissioning, spent fuel management cost increased compared to delayed decommissioning, and delayed deocmmissioning increased the cost of terminating the operation license. However, in general, delayed decommissioning does not show any significant benefit as compared with immediate decommissioning. It is necessary to consider the evaluation according to the site conditions when evaluating the cost of decommissioning domestic nuclear power plants. Also, in Korea, IAEA recommendations were applied to reorganize the radioactive waste classification system. Therefore, it is necessary to develop a method to appropriately use the decommissioning data of the preceding US Nuclear Power Plant in the new classification system when estimating the amount of radioactive waste generated during decommissioning. In particular, the establishment of the evaluation methodology for the waste to be disposed of will be an important factor in securing the accuracy of the decommissioning cost. In addition, it is necessary to construct information data that can be applied to facility characteristics and work characteristics in order to evaluate the cost of demolition of domestic nuclear power plants.